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It should be said: for someone trained in formal methods, the area
of probability theory can be rather sloppy: everything is called ‘P’
types are hardly ever used, crucial ingredients (like distributions
in expected values) are left implicit, basic notions (like conjugate
prior) are introduced only via examples, calculation recipes and
algorithms are regularly just given, without explanation, goal or
Jjustification, etc. This hurts, especially because there is so much
beautiful mathematical structure around. (Jacobs [2019])
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Classical probability theory
Start with an underlying probability space (2, Xq,P)

Model phenomena of interest using random variables (i.e. measurable
functions) X : Q — X, i.e.

(X7ZX)

(y7 Zy)
Can consider many distinct X and ), but Q is fixed throughout

Usually study the joint or marginal behaviour of X, Y/, etc.
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This picture is quite complex

Many seemingly different components playing different roles:
@ The underlying measurable space (2, Xq)
@ The probability measure P

@ Random variables X, Y, etc.

@ Joint and marginal distributions of X, Y, etc.

Also somewhat at odds with how we think intuitively:
e Distributions are secondary objects (cf. Bayesian statistics)
@ Random variables are static (can't “sample” from them)
e OK for fixed datasets, but often ill-suited for describing computation

o Kolmogorov-style conditioning is highly technical
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Practical implications

Mental model
# #

Mathematical model < » Computational model

Implications:
@ Lack of conceptual scalability that often requires hand-waving
o Difficult to interface with other mathematical theories
@ Impediment to formal verification and automation
°

A challenge pedagogically



Categorical probability reorganises the existing theory in a way that makes
reasoning about higher-level concepts easy and intuitive

Theory becomes much more like a (high-level, expressive) programming
language






Invariant Neural Networks
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Background: group invariance

Often it is desirable for a function f : X — ) to be invariant to the action
of a group G

Example:

@ X consists of sequences of profiles of subjects in an i.i.d. population
@ G consists of permutations of the indices of these sequences

e f: X — Y makes some prediction about the population

Important question: for a given group G, characterise the class of
f: X — Y such that

f(g-x)="f(x) forallge Gand x € X
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Probabilistic Symmetries

Bloem-Reddy and Teh [2020] consider a probabilistic version of this

Setup: X :Q — X and Y : Q — Y are random variables representing data
and prediction respectively

Aim is to characterise when Y is conditionally G-invariant in the sense that
P(YeB|XecA)=P(YeB|Xecg-A)

forallge G, Ac Xy withP(X € A)>0,and Be Xy



Main result (on invariance)

THEOREM 7. Let X and'Y be random elements of Borel spaces X and ), respectively,
and G a compact group acting measurably on X. Assume that Px is G-invariant, and pick a
maximal invariant M : X — S, with S another Borel space. Then Py|x is G-invariant if and
only if there exists a measurable function f : [0,1] x & — Y such that

(14) (X, )2 (X, f(n,M(X))) withn~Unif[0,1] and n1LX .



Main result (on invariance)

THEOREM 7. Let X and'Y be random elements of Borel spaces X and ), respectively,
and G a compact group acting measurably on X. Assume that Px is G-invariant, and pick a
maximal invariant M : X — S, with S another Borel space. Then Py|x is G-invariant if and
only if there exists a measurable function f : [0,1] x & — Y such that

(14) (X, )2 (X, f(n,M(X))) withn~Unif[0,1] and n1LX .

Here a maximal invariant is any measurable function M such that
M(x) = M(x') & x = g - x' for some g € G

(picture next slide)
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The proof of this is complex and uses highly technical ideas from advanced
probability theory, e.g.

@ Measurable cross section

@ Normalised Haar measure

o Orbit law

o Conditional independence (of X and Y given M(X))

Also only applies when G is compact and X has a G-invariant marginal



Thoughts

Why is this so hard to show? (E.g. compare deterministic case)



Thoughts

Why is this so hard to show? (E.g. compare deterministic case)

Is it optimal to model a neural network in terms of random variables
(X, Y)? And why must Law[X] be G-invariant?



Thoughts

Why is this so hard to show? (E.g. compare deterministic case)

Is it optimal to model a neural network in terms of random variables
(X, Y)? And why must Law[X] be G-invariant?

With the tools of categorical probability, we can not only generalise this
result, but we can prove it in a way that maps directly onto our intuitions
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Category theory

A category (often) models a collection of entities that behave like
functions:

idx & X 4f> Y
gk‘ lg
Z

Here X, Y, Z are objectsand f : X = Y, g: Y — X are arrows or
morphisms

Minimal structure:

@ We can compose compatibly typed morphisms

@ We have identity arrows



Formal definition

Definition

A category consists of a collection of objects and a collection of arrows

Each arrow f has a source and target object, denoted f : X — )

There is a composition operation o on arrows such that

gof:X— 2 whenever f : X - Yandg:)Y — Z
ho(gof)=(hog)of when f, g, h are appropriately typed

For every object X" there is an identity arrow idy : X — X satisfying

foidy =f whenever f : X — Y
idyog=g whenever g : Z — X

Philosophy: study structural properties extrinsically in terms of arrows
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Categories are everywhere:
@ Set, the category of sets and functions
@ Top, the category of topological spaces and continuous functions
@ Meas, the category of measurable spaces and measurable functions

@ etc...

Not all categories look like this, e.g.:
@ Stoch, the category of measurable spaces and Markov kernels

@ A group G can be viewed as a category (with a single object, and
inverses)

@ A poset can be viewed as a category (with a unique arrow x — y iff
x<y)
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Functors

The only other definition we will need is that of a functor

Idea: a functor F : C — D is an arrow between categories:

X FX
f — Ff
Y FY

Note overloaded on both objects and arrows
Must satisfy F(g o f) = Fgo Ff and Fidy = idey

Categories and functors themselves form a category...
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The Giry Functor [Giry, 1982]

Denote by PX the set of probability measures on X' (where Xy implicit)

It turns out P can be thought of as a functor Meas — Meas:

e Equip PX with the (initial) o-algebra generated by the functions:

evala: PX — [0,1] where A € Xy
p— p(A)

@ For measurable f : X — ), define Pf by the pushforward, i.e.

Pf:PX — PY
Pf(p) = f#p

@ Check functor axioms hold

This reduces already the complexity of our original picture (since P € PQ)
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Markov kernels

Consider a measurable function k : X — PY

By definition of P:

@ k(x)(—) is a probability measure for all x € X
@ k(—)(B) = evalg o k is measurable for all B € ¥y

Hence k is a Markov kernel: can think of as k : X x ¥y — [0, 1] such that
@ k(x,—) is a probability measure for all x € X
@ k(—, B) is measurable for all B € ¥y

(Precisely: write k : X — PY as k: X — (Xy — [0,1]) and uncurry)
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We can consider Markov kernels to be generalised measurable functions:

o Every “normal” f : X — ) can be canonically identified with
dyof: X — P)Y, where

(53} Y — Py
y — Dirac(y)

o Every “generalised generalised” function k : X — PP) can be
canonically identified with Ey o k : X — P)), where

Ey : PPY — PY

p— [ p(dqg)q(-)
Py

P, 6y, and Ey moreover satisfy coherence conditions and so give rise to a
monad structure on Meas
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Kleisli composition

The monad structure on Meas yields a canonical notion of composition of
generalised functions (i.e. Markov kernels)

Given k: X - PY and /:)Y — PZ, define £ oy k : X — PZ via the

following composition:

x ks py_Pppz E2, pz

Can show this is the usual Chapman-Kolmogorov equation:

(£ o k)(x)(A) = /yk(x)(dy) y)(A) where Ae ¥z

Dirac maps 6y : X — PX, x — Dirac(x) behave like identities



Kleisli category

This gives rise to the Kleisli category of Meas, known as Stoch:

Meas Stoch
Objects Measurable spaces Measurable spaces
Arrows Measurable functions Markov kernels

Composition | Composition of functions | Chapman-Kolmogorov
Identities Identity functions Dirac maps
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Kleisli adjunction

We have a bijective correspondence (in fact an adjunction):

Markov kernels X — ) s Measurable functions X — PY

We saw that identity kernels correspond to Dirac maps, i.e.
idx:X—)X ey 5)(:X—)PX
Interesting question: what Markov kernel corresponds to the measurable
function idpy : PY — PY?
sampy : PY = Y o~ idpy : PY — PY

Here sampy,(p)(B) = p(B), i.e. samp,, draws a sample from its input



Stoch unifies and generalises the elements in our original picture:

(X7 ZX)
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Stoch unifies and generalises the elements in our original picture:
(Xa ZX)
6_)(OX

({+),5) —E (Q5q) —2

5,,zokl \

(PZ,%2)

(Y, xy)

ZazZ)

samp

Although to some extent (2, ¥q) is redundant now ...



Return to case study



THEOREM 7. Let X and'Y be random elements of Borel spaces X and ), respectively,
and G a compact group acting measurably on X. Assume that Px is G-invariant, and pick a
maximal invariant M : X — S, with S another Borel space. Then Py |x is G-invariant if and
only if there exists a measurable function f : [0,1] x & — Y such that

(14) (X, )2 (X, f(n,M(X))) withn~Unif[0,1] and n1LX .



Conditional distributions/disintegrations

Proposition

If Y is standard Borel, then for any distribution p on X ® ), there exists a
Markov kernel k : X — Y such that

p(Ax B) = / proj x(p)(dx) k(x)(B) forall A€ Xx and B € Xy.
A




Conditional distributions/disintegrations

Proposition

If Y is standard Borel, then for any distribution p on X ® ), there exists a
Markov kernel k : X — Y such that

p(Ax B) = / proj x(p)(dx) k(x)(B) forall A€ Xx and B € Xy.
A

It is convenient to have a graphical way to denote this. Standard
commutative diagrams get complex, but string diagrams work:

xX oy

i _
% \/

(Read from bottom to top)



Informal usage

We use these informally all the time already, e.g. [Vaswani et al., 2017]:

Output
Probabilities

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Nx
1
Nx Add & Norm
Add & Norm ‘Masked
Multi-Head Multi-Head
Attention Attention
A B A B
\ )
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.
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Invariance under an equivalence relation

Suppose ~ is an arbitrary equivalence relation on X

Definition

A distribution p on X ® ) is conditionally ~-invariant if p admits a
disintegration k : X — Y that is ~-invariant, i.e. k(x) = k(x’) if x ~ x'.

For p = Law[X, Y], equivalent to conditional invariance in sense of
Bloem-Reddy and Teh [2020] under their setup, i.e. G is compact, Law[X]
is G-invariant, ) standard Borel, and

x~x & x=g-x forsome g €3,

Makes sense more generally — could even start with k as the definition of a
(probabilistic) neural network
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Quotient spaces

Given any measurable space X and an equivalence relation ~ on X, we
can form the quotient space X'/~ of equivalence classes under ~

The o-algebra is final with respect to the quotient map g : X — X'/~

Explicitly, Y/ :={B C X/~ | ¢ }(B) € Zx}.



Universal property of the quotient

Proposition

A measurable function g : X — Z is ~-invariant iff there exists a
(necessarily unique) measurable function g : X /~ — Z such that
goq=g, ie. the following diagram commutes:
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Universal property of the quotient

Proposition

A measurable function g : X — Z is ~-invariant iff there exists a
(necessarily unique) measurable function g : X /~ — Z such that
goq=g, ie. the following diagram commutes:

X % .,z

e
|
.o 8

X/~

Requires proof, but can do so via only elementary definitions

A very natural result in the context of category theory



Invariant kernels via the quotient

Now take Z = P}’ and interpret within Stoch

Corollary

/ﬂ Markov kernel k : X — Y is ~-invariant iff there exists a Markov kernel
k:X/~— Y with
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Invariant kernels via the quotient

Now take Z = P}’ and interpret within Stoch

Corollary

/ﬂ Markov kernel k : X — Y is ~-invariant iff there exists a Markov kernel
k:X/~— Y with

N
1
k
_
4]
X

(Note that we are identifying g with its lifted version dx /.. o q)



Noise outsourcing

Proposition

For any Markov kernel k : Z — Y with Y standard Borel, there exists a
measurable function f : Z ® [0,1] — Y such that

v v
=
z \Y/

where u = Uniform(0, 1).




Noise outsourcing

Proposition

For any Markov kernel k : Z — Y with Y standard Borel, there exists a
measurable function f : Z ® [0,1] — Y such that

y y

=l
2 \/

Z

where u = Uniform(0, 1).

Standard result (e.g. Lemma 3.22 of Kallenberg [2002])
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Combining these results

Proposition

If Y is standard Borel, then Law[X, Y] is conditionally ~-invariant iff
there exists a measurable function f : X/~ ® [0,1] — Y such that

(X,Y) 2 (X, f(q(X),n))  where n ~ Uniform(0,1), n AL X

Proof: writing p := Law[X, Y], conditional ~-invariance implies

PO vy T 7
x
:

Conversely, right-hand side is conditionally ~-invariant since q is.



Comparison with original result
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Comparison with original result

THEOREM 7. Let X and Y be random elements of Borel spaces X and ), respectively,
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Not quite done:

X, V) S (X F(g(X).m) A Y EF(q(X),n)



Completing the proof

Choose h: X ® Y ®[0,1] — [0, 1] such that

X Yy [0,1]
XYy [0,1]

Y w
\

Existence of h follows by disintegrating right-hand side along X x ) and
then applying noise outsourcing result

v
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Completing the proof

Now affix the same (g, f) construction to both sides:

¥y v x Yy ¥y [01] XYy Yy [01]
|
K
— —
9] \/ 9] \/

N/ N/

= If £ ~ Uniform(0, 1) with £ 1L (X, Y), then letting n := h(X, Y,§),
have (X, Y, £(a(X),m),m) = (X, f(a(X),£), F(a(X),€).€)
= Y 2 f(q(X),n) and n 4 ¢ ~ Uniform(0,1) with n 1L X
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Combining these results

THEOREM 7. Let X and'Y be random elements of Borel spaces X and ), respectively,
and G a compact group acting measurably on X. Assume that Px is G-invariant, and pick a
maximal invariant M : X — S, with S another Borel space. Then Py |x is G-invariant if and
only if there exists a measurable function f : [0,1] x & — Y such that

(14) (X, )2 (X, f(n,M(X))) withn~Unif[0,1] and n1LX .

Theorem (Our version)

If Y is Borel, then Law[X, Y] is conditionally ~-invariant iff there exists a
measurable function f : X/~ ® [0,1] — Y such that

(X, Y) 2 (X, f(q(X),n)) where 1 ~ Uniform(0, 1) with n 1 X

(More precisely, both statements should refer to the existence of an extension of the
underlying probability space that admits suitable choices of 1 and f)

Possibly better to express entirely via Markov kernels
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Summary and Outlook

Categorical probability offers a high-level perspective on the classical
theory that makes abstraction easier and helps theory follow intuition

The outlook is very positive:

@ Lots of activity in categorical probability, e.g. Perrone [2018], Cho and
Jacobs [2019], Jacobs [2019], Fritz [2020], Moss and Perrone [2023],
Perrone [2023]

@ Category theory has been hugely successful elsewhere, e.g. pure
maths, computer science, quantum mechanics

The programming language has been (increasingly) written — now is time
for practitioners to write new software



Upcoming work

Equivariant stochastic neural networks in Markov categories

Rob Cornish
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