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Motivation

It should be said: for someone trained in formal methods, the area
of probability theory can be rather sloppy: everything is called ‘P’,
types are hardly ever used, crucial ingredients (like distributions
in expected values) are left implicit, basic notions (like conjugate
prior) are introduced only via examples, calculation recipes and
algorithms are regularly just given, without explanation, goal or
justification, etc. This hurts, especially because there is so much
beautiful mathematical structure around. (Jacobs [2019])



Classical probability theory

Start with an underlying probability space (Ω,ΣΩ,P)

Model phenomena of interest using random variables (i.e. measurable
functions) X : Ω → X , i.e.

(X ,ΣX )

(Ω,ΣΩ,P)
...

(Y,ΣY)

X

Y

Can consider many distinct X and Y, but Ω is fixed throughout

Usually study the joint or marginal behaviour of X , Y , etc.
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Problems

This picture is quite complex

Many seemingly different components playing different roles:

The underlying measurable space (Ω,ΣΩ)

The probability measure P
Random variables X , Y , etc.

Joint and marginal distributions of X , Y , etc.

Also somewhat at odds with how we think intuitively:

Distributions are secondary objects (cf. Bayesian statistics)

Random variables are static (can’t “sample” from them)

OK for fixed datasets, but often ill-suited for describing computation

Kolmogorov-style conditioning is highly technical
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Practical implications

Mental model

Mathematical model Computational model

̸= ̸=

̸=

Implications:

Lack of conceptual scalability that often requires hand-waving

Difficult to interface with other mathematical theories

Impediment to formal verification and automation

A challenge pedagogically



Practical implications

Mental model

Mathematical model Computational model

̸= ̸=

̸=

Implications:

Lack of conceptual scalability that often requires hand-waving

Difficult to interface with other mathematical theories

Impediment to formal verification and automation

A challenge pedagogically



Main point

Categorical probability reorganises the existing theory in a way that makes
reasoning about higher-level concepts easy and intuitive

Theory becomes much more like a (high-level, expressive) programming
language



Case study



Invariant Neural Networks
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Treating neural network inputs and outputs as random variables, we char-
acterize the structure of neural networks that can be used to model data that
are invariant or equivariant under the action of a compact group. Much recent
research has been devoted to encoding invariance under symmetry transfor-
mations into neural network architectures, in an effort to improve the perfor-
mance of deep neural networks in data-scarce, non-i.i.d., or unsupervised set-
tings. By considering group invariance from the perspective of probabilistic
symmetry, we establish a link between functional and probabilistic symmetry,
and obtain generative functional representations of probability distributions
that are invariant or equivariant under the action of a compact group. Our
representations completely characterize the structure of neural networks that
can be used to model such distributions and yield a general program for con-
structing invariant stochastic or deterministic neural networks. We demon-
strate that examples from the recent literature are special cases, and develop
the details of the general program for exchangeable sequences and arrays.
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Background: group invariance

Often it is desirable for a function f : X → Y to be invariant to the action
of a group G

Example:

X consists of sequences of profiles of subjects in an i.i.d. population

G consists of permutations of the indices of these sequences

f : X → Y makes some prediction about the population

Important question: for a given group G, characterise the class of
f : X → Y such that

f (g · x) = f (x) for all g ∈ G and x ∈ X
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Probabilistic Symmetries

Bloem-Reddy and Teh [2020] consider a probabilistic version of this

Setup: X : Ω → X and Y : Ω → Y are random variables representing data
and prediction respectively

Aim is to characterise when Y is conditionally G-invariant in the sense that

P(Y ∈ B | X ∈ A) = P(Y ∈ B | X ∈ g · A)

for all g ∈ G, A ∈ ΣX with P(X ∈ A) > 0, and B ∈ ΣY
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Main result (on invariance)
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X M(X) Y

FIG 2. An illustration of structure of Theorem 7. The maximal invariant M (middle) acts as an index of the orbits
of X under G (left), and mediates all dependence of Y on X , i.e., PY |X = PY |M(X) (right). (Best viewed in
color.)

functions. The deterministic functional models in Section 2.1 are special cases of the latter:
for every invariant noise-outsourced function f such that Y = f(⌘,X), we have that

E[Y | M(X)] =

Z

[0,1]
f(⌘,X) d⌘ = f 0(X) ,

such that f 0(X) is also invariant (and similarly for equivariant functions).

4.1. Invariant Conditional Distributions. To state the first main result, on the function
representation of invariant conditional distributions, some definitions are required. For a
group G acting on a set X , the orbit of any x 2 X is the set of elements in X that can
be generated by applying the elements of G. It is denoted G · x = {g · x;g 2 G}. The sta-
bilizer, or isotropy subgroup, of x 2 X is the subgroup of G that leaves x unchanged:
Gx = {g 2 G;g · x = x}. An invariant statistic S : X ! S is a measurable map that satis-
fies S(x) = S(g · x) for all g 2 G and x 2 X . A maximal invariant statistic, or maximal
invariant, is an invariant statistic M : X ! S such that M(x1) = M(x2) implies x2 = g · x1

for some g 2 G; equivalently, M takes a different constant value on each orbit. The orbits
partition X into equivalence classes, on each of which M takes a different value.

By definition, an invariant distribution PX is constant on any particular orbit. Consider the
conditional distribution PX(X | M(X) = m) := PX|m(X). Conditioning on the maximal
invariant taking a particular value is equivalent to conditioning on X being in a particular
orbit; for invariant PX , PX|m is zero outside the orbit on which M(X) = m, and “uniform”
on the orbit, modulo fixed points (see Footnote 14 in Appendix B). Furthermore, for any
Y such that (g · X,Y )

d
= (X,Y ) for all g 2 G, M(X) contains all relevant information for

predicting Y from X ; that is, Y ??M(X)X . Figure 2 illustrates the structure. These high-level
ideas, which are made rigorous in Appendix B, lead to the following functional representation
of invariant conditional distributions.

THEOREM 7. Let X and Y be random elements of Borel spaces X and Y , respectively,
and G a compact group acting measurably on X . Assume that PX is G-invariant, and pick a
maximal invariant M : X ! S , with S another Borel space. Then PY |X is G-invariant if and
only if there exists a measurable function f : [0,1]⇥ S ! Y such that

(X,Y )
a.s.
=
�
X,f(⌘,M(X))

�
with ⌘ ⇠ Unif[0,1] and ⌘??X .(14)

Here a maximal invariant is any measurable function M such that

M(x) = M(x ′) ⇔ x = g · x ′ for some g ∈ G

(picture next slide)
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Proof

The proof of this is complex and uses highly technical ideas from advanced
probability theory, e.g.

Measurable cross section

Normalised Haar measure

Orbit law

Conditional independence (of X and Y given M(X ))

Also only applies when G is compact and X has a G-invariant marginal
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Thoughts

Why is this so hard to show? (E.g. compare deterministic case)

Is it optimal to model a neural network in terms of random variables
(X ,Y )? And why must Law[X ] be G-invariant?

With the tools of categorical probability, we can not only generalise this
result, but we can prove it in a way that maps directly onto our intuitions
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Category theory

A category (often) models a collection of entities that behave like
functions:

X Y

Z

idX
f

g◦f
g

Here X ,Y ,Z are objects and f : X → Y , g : Y → X are arrows or
morphisms

Minimal structure:

We can compose compatibly typed morphisms

We have identity arrows
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Formal definition

Definition

A category consists of a collection of objects and a collection of arrows

Each arrow f has a source and target object, denoted f : X → Y

There is a composition operation ◦ on arrows such that

g ◦ f : X → Z whenever f : X → Y and g : Y → Z
h ◦ (g ◦ f ) = (h ◦ g) ◦ f when f , g , h are appropriately typed

For every object X there is an identity arrow idX : X → X satisfying

f ◦ idX = f whenever f : X → Y
idX ◦ g = g whenever g : Z → X

Philosophy: study structural properties extrinsically in terms of arrows



Examples

Categories are everywhere:

Set, the category of sets and functions

Top, the category of topological spaces and continuous functions

Meas, the category of measurable spaces and measurable functions

etc...

Not all categories look like this, e.g.:

Stoch, the category of measurable spaces and Markov kernels

A group G can be viewed as a category (with a single object, and
inverses)

A poset can be viewed as a category (with a unique arrow x → y iff
x ≤ y)
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Functors

The only other definition we will need is that of a functor

Idea: a functor F : C → D is an arrow between categories:

X FX

7→

Y FY

f Ff

Note overloaded on both objects and arrows

Must satisfy F (g ◦ f ) = Fg ◦ Ff and F idX = idFX

Categories and functors themselves form a category...
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Analogy



The Giry Functor [Giry, 1982]

Denote by PX the set of probability measures on X (where ΣX implicit)

It turns out P can be thought of as a functor Meas → Meas:

Equip PX with the (initial) σ-algebra generated by the functions:

evalA : PX → [0, 1] where A ∈ ΣX
p 7→ p(A)

For measurable f : X → Y, define Pf by the pushforward, i.e.

Pf : PX → PY
Pf (p) 7→ f #p

Check functor axioms hold

This reduces already the complexity of our original picture (since P ∈ PΩ)
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Pf (p) 7→ f #p

Check functor axioms hold

This reduces already the complexity of our original picture (since P ∈ PΩ)
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Markov kernels

Consider a measurable function k : X → PY

By definition of P:

k(x)(−) is a probability measure for all x ∈ X
k(−)(B) = evalB ◦ k is measurable for all B ∈ ΣY

Hence k is a Markov kernel: can think of as k : X ×ΣY → [0, 1] such that

k(x ,−) is a probability measure for all x ∈ X
k(−,B) is measurable for all B ∈ ΣY

(Precisely: write k : X → PY as k : X → (ΣY 7→ [0, 1]) and uncurry)
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Giry monad

We can consider Markov kernels to be generalised measurable functions:

Every “normal” f : X → Y can be canonically identified with
δY ◦ f : X → PY, where

δY : Y → PY
y 7→ Dirac(y)

Every “generalised generalised” function k : X → PPY can be
canonically identified with EY ◦ k : X → PY, where

EY : PPY → PY

p 7→
∫

PY
p(dq) q(−)

P, δY , and EY moreover satisfy coherence conditions and so give rise to a
monad structure on Meas
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Kleisli composition

The monad structure on Meas yields a canonical notion of composition of
generalised functions (i.e. Markov kernels)

Given k : X → PY and ℓ : Y → PZ, define ℓ ◦kl k : X → PZ via the
following composition:

X PY PPZ PZk Pℓ EZ

Can show this is the usual Chapman-Kolmogorov equation:

(ℓ ◦kl k)(x)(A) =

∫

Y
k(x)(dy) ℓ(y)(A) where A ∈ ΣZ

Dirac maps δX : X → PX , x 7→ Dirac(x) behave like identities



Kleisli composition

The monad structure on Meas yields a canonical notion of composition of
generalised functions (i.e. Markov kernels)

Given k : X → PY and ℓ : Y → PZ, define ℓ ◦kl k : X → PZ via the
following composition:

X PY PPZ PZk Pℓ EZ

Can show this is the usual Chapman-Kolmogorov equation:

(ℓ ◦kl k)(x)(A) =

∫

Y
k(x)(dy) ℓ(y)(A) where A ∈ ΣZ

Dirac maps δX : X → PX , x 7→ Dirac(x) behave like identities



Kleisli composition

The monad structure on Meas yields a canonical notion of composition of
generalised functions (i.e. Markov kernels)

Given k : X → PY and ℓ : Y → PZ, define ℓ ◦kl k : X → PZ via the
following composition:

X PY PPZ PZk Pℓ EZ

Can show this is the usual Chapman-Kolmogorov equation:

(ℓ ◦kl k)(x)(A) =

∫

Y
k(x)(dy) ℓ(y)(A) where A ∈ ΣZ

Dirac maps δX : X → PX , x 7→ Dirac(x) behave like identities



Kleisli composition

The monad structure on Meas yields a canonical notion of composition of
generalised functions (i.e. Markov kernels)

Given k : X → PY and ℓ : Y → PZ, define ℓ ◦kl k : X → PZ via the
following composition:

X PY PPZ PZk Pℓ EZ

Can show this is the usual Chapman-Kolmogorov equation:

(ℓ ◦kl k)(x)(A) =

∫

Y
k(x)(dy) ℓ(y)(A) where A ∈ ΣZ

Dirac maps δX : X → PX , x 7→ Dirac(x) behave like identities



Kleisli category

This gives rise to the Kleisli category of Meas, known as Stoch:

Meas Stoch
Objects Measurable spaces Measurable spaces
Arrows Measurable functions Markov kernels

Composition Composition of functions Chapman-Kolmogorov
Identities Identity functions Dirac maps



Kleisli adjunction

We have a bijective correspondence (in fact an adjunction):

Markov kernels X → Y ↭ Measurable functions X → PY

We saw that identity kernels correspond to Dirac maps, i.e.

idX : X → X ↭ δX : X → PX

Interesting question: what Markov kernel corresponds to the measurable
function idPY : PY → PY?

sampY : PY → Y

↭ idPY : PY → PY

Here sampY(p)(B) = p(B), i.e. sampY draws a sample from its input
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New picture

Stoch unifies and generalises the elements in our original picture:

(X ,ΣX )

({∗},Σ{∗}) (Ω,ΣΩ) (Y,ΣY)

(Z,ΣZ)

P

δX ◦X

δY◦Y

k

Although to some extent (Ω,ΣΩ) is redundant now . . .
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Return to case study



Recap
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X M(X) Y

FIG 2. An illustration of structure of Theorem 7. The maximal invariant M (middle) acts as an index of the orbits
of X under G (left), and mediates all dependence of Y on X , i.e., PY |X = PY |M(X) (right). (Best viewed in
color.)

functions. The deterministic functional models in Section 2.1 are special cases of the latter:
for every invariant noise-outsourced function f such that Y = f(⌘,X), we have that

E[Y | M(X)] =

Z

[0,1]
f(⌘,X) d⌘ = f 0(X) ,

such that f 0(X) is also invariant (and similarly for equivariant functions).

4.1. Invariant Conditional Distributions. To state the first main result, on the function
representation of invariant conditional distributions, some definitions are required. For a
group G acting on a set X , the orbit of any x 2 X is the set of elements in X that can
be generated by applying the elements of G. It is denoted G · x = {g · x;g 2 G}. The sta-
bilizer, or isotropy subgroup, of x 2 X is the subgroup of G that leaves x unchanged:
Gx = {g 2 G;g · x = x}. An invariant statistic S : X ! S is a measurable map that satis-
fies S(x) = S(g · x) for all g 2 G and x 2 X . A maximal invariant statistic, or maximal
invariant, is an invariant statistic M : X ! S such that M(x1) = M(x2) implies x2 = g · x1

for some g 2 G; equivalently, M takes a different constant value on each orbit. The orbits
partition X into equivalence classes, on each of which M takes a different value.

By definition, an invariant distribution PX is constant on any particular orbit. Consider the
conditional distribution PX(X | M(X) = m) := PX|m(X). Conditioning on the maximal
invariant taking a particular value is equivalent to conditioning on X being in a particular
orbit; for invariant PX , PX|m is zero outside the orbit on which M(X) = m, and “uniform”
on the orbit, modulo fixed points (see Footnote 14 in Appendix B). Furthermore, for any
Y such that (g · X,Y )

d
= (X,Y ) for all g 2 G, M(X) contains all relevant information for

predicting Y from X ; that is, Y ??M(X)X . Figure 2 illustrates the structure. These high-level
ideas, which are made rigorous in Appendix B, lead to the following functional representation
of invariant conditional distributions.

THEOREM 7. Let X and Y be random elements of Borel spaces X and Y , respectively,
and G a compact group acting measurably on X . Assume that PX is G-invariant, and pick a
maximal invariant M : X ! S , with S another Borel space. Then PY |X is G-invariant if and
only if there exists a measurable function f : [0,1]⇥ S ! Y such that

(X,Y )
a.s.
=
�
X,f(⌘,M(X))

�
with ⌘ ⇠ Unif[0,1] and ⌘??X .(14)



Conditional distributions/disintegrations

Proposition

If Y is standard Borel, then for any distribution p on X ⊗ Y, there exists a
Markov kernel k : X → Y such that

p(A× B) =

∫

A
projX (p)(dx) k(x)(B) for all A ∈ ΣX and B ∈ ΣY .

It is convenient to have a graphical way to denote this. Standard
commutative diagrams get complex, but string diagrams work:

p

X Y
=

p

k

X Y

(Read from bottom to top)
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Informal usage

We use these informally all the time already, e.g. [Vaswani et al., 2017]:

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3



Invariance under an equivalence relation

Suppose ∼ is an arbitrary equivalence relation on X

Definition

A distribution p on X ⊗ Y is conditionally ∼-invariant if p admits a
disintegration k : X → Y that is ∼-invariant, i.e. k(x) = k(x ′) if x ∼ x ′.

For p = Law[X ,Y ], equivalent to conditional invariance in sense of
Bloem-Reddy and Teh [2020] under their setup, i.e. G is compact, Law[X ]
is G-invariant, Y standard Borel, and

x ∼ x ′ ⇔ x = g · x ′ for some g ∈ G,

Makes sense more generally – could even start with k as the definition of a
(probabilistic) neural network
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Quotient spaces

Given any measurable space X and an equivalence relation ∼ on X , we
can form the quotient space X/∼ of equivalence classes under ∼

The σ-algebra is final with respect to the quotient map q : X → X/∼

Explicitly, ΣX/∼ := {B ⊆ X/∼ | q−1(B) ∈ ΣX }.
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Universal property of the quotient

Proposition

A measurable function g : X → Z is ∼-invariant iff there exists a
(necessarily unique) measurable function g̃ : X/∼ → Z such that
g̃ ◦ q = g , i.e. the following diagram commutes:

X Z

X/∼
q

g

g̃

Requires proof, but can do so via only elementary definitions

A very natural result in the context of category theory
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Invariant kernels via the quotient

Now take Z = PY and interpret within Stoch

Corollary

A Markov kernel k : X → Y is ∼-invariant iff there exists a Markov kernel
k̃ : X/∼ → Y with

=k
k̃

X
X

Y
Y

q

(Note that we are identifying q with its lifted version δX/∼ ◦ q)
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Noise outsourcing

Proposition

For any Markov kernel k : Z → Y with Y standard Borel, there exists a
measurable function f : Z ⊗ [0, 1] → Y such that

=k f

u

Z
Z

Y Y

where u = Uniform(0, 1).

Standard result (e.g. Lemma 3.22 of Kallenberg [2002])
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Combining these results

Proposition

If Y is standard Borel, then Law[X ,Y ] is conditionally ∼-invariant iff
there exists a measurable function f : X/∼⊗ [0, 1] → Y such that

(X ,Y )
d
= (X , f (q(X ), η)) where η ∼ Uniform(0, 1), η ⊥⊥ X

Proof: writing p := Law[X ,Y ], conditional ∼-invariance implies

p

X Y
=

p

k

X Y

=

p

q

X Y

k̃

=

p

q

X Y

f

u

Conversely, right-hand side is conditionally ∼-invariant since q is.



Combining these results

Proposition

If Y is standard Borel, then Law[X ,Y ] is conditionally ∼-invariant iff
there exists a measurable function f : X/∼⊗ [0, 1] → Y such that

(X ,Y )
d
= (X , f (q(X ), η)) where η ∼ Uniform(0, 1), η ⊥⊥ X

Proof: writing p := Law[X ,Y ], conditional ∼-invariance implies

p

X Y
=

p

k

X Y

=

p

q

X Y

k̃

=

p

q

X Y

f

u

Conversely, right-hand side is conditionally ∼-invariant since q is.



Combining these results

Proposition

If Y is standard Borel, then Law[X ,Y ] is conditionally ∼-invariant iff
there exists a measurable function f : X/∼⊗ [0, 1] → Y such that

(X ,Y )
d
= (X , f (q(X ), η)) where η ∼ Uniform(0, 1), η ⊥⊥ X

Proof: writing p := Law[X ,Y ], conditional ∼-invariance implies

p

X Y
=

p

k

X Y

=

p

q

X Y

k̃

=

p

q

X Y

f

u

Conversely, right-hand side is conditionally ∼-invariant since q is.



Comparison with original result
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FIG 2. An illustration of structure of Theorem 7. The maximal invariant M (middle) acts as an index of the orbits
of X under G (left), and mediates all dependence of Y on X , i.e., PY |X = PY |M(X) (right). (Best viewed in
color.)

functions. The deterministic functional models in Section 2.1 are special cases of the latter:
for every invariant noise-outsourced function f such that Y = f(⌘,X), we have that

E[Y | M(X)] =

Z

[0,1]
f(⌘,X) d⌘ = f 0(X) ,

such that f 0(X) is also invariant (and similarly for equivariant functions).

4.1. Invariant Conditional Distributions. To state the first main result, on the function
representation of invariant conditional distributions, some definitions are required. For a
group G acting on a set X , the orbit of any x 2 X is the set of elements in X that can
be generated by applying the elements of G. It is denoted G · x = {g · x;g 2 G}. The sta-
bilizer, or isotropy subgroup, of x 2 X is the subgroup of G that leaves x unchanged:
Gx = {g 2 G;g · x = x}. An invariant statistic S : X ! S is a measurable map that satis-
fies S(x) = S(g · x) for all g 2 G and x 2 X . A maximal invariant statistic, or maximal
invariant, is an invariant statistic M : X ! S such that M(x1) = M(x2) implies x2 = g · x1

for some g 2 G; equivalently, M takes a different constant value on each orbit. The orbits
partition X into equivalence classes, on each of which M takes a different value.

By definition, an invariant distribution PX is constant on any particular orbit. Consider the
conditional distribution PX(X | M(X) = m) := PX|m(X). Conditioning on the maximal
invariant taking a particular value is equivalent to conditioning on X being in a particular
orbit; for invariant PX , PX|m is zero outside the orbit on which M(X) = m, and “uniform”
on the orbit, modulo fixed points (see Footnote 14 in Appendix B). Furthermore, for any
Y such that (g · X,Y )

d
= (X,Y ) for all g 2 G, M(X) contains all relevant information for

predicting Y from X ; that is, Y ??M(X)X . Figure 2 illustrates the structure. These high-level
ideas, which are made rigorous in Appendix B, lead to the following functional representation
of invariant conditional distributions.
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then applying noise outsourcing result
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functions. The deterministic functional models in Section 2.1 are special cases of the latter:
for every invariant noise-outsourced function f such that Y = f(⌘,X), we have that

E[Y | M(X)] =

Z

[0,1]
f(⌘,X) d⌘ = f 0(X) ,

such that f 0(X) is also invariant (and similarly for equivariant functions).

4.1. Invariant Conditional Distributions. To state the first main result, on the function
representation of invariant conditional distributions, some definitions are required. For a
group G acting on a set X , the orbit of any x 2 X is the set of elements in X that can
be generated by applying the elements of G. It is denoted G · x = {g · x;g 2 G}. The sta-
bilizer, or isotropy subgroup, of x 2 X is the subgroup of G that leaves x unchanged:
Gx = {g 2 G;g · x = x}. An invariant statistic S : X ! S is a measurable map that satis-
fies S(x) = S(g · x) for all g 2 G and x 2 X . A maximal invariant statistic, or maximal
invariant, is an invariant statistic M : X ! S such that M(x1) = M(x2) implies x2 = g · x1

for some g 2 G; equivalently, M takes a different constant value on each orbit. The orbits
partition X into equivalence classes, on each of which M takes a different value.

By definition, an invariant distribution PX is constant on any particular orbit. Consider the
conditional distribution PX(X | M(X) = m) := PX|m(X). Conditioning on the maximal
invariant taking a particular value is equivalent to conditioning on X being in a particular
orbit; for invariant PX , PX|m is zero outside the orbit on which M(X) = m, and “uniform”
on the orbit, modulo fixed points (see Footnote 14 in Appendix B). Furthermore, for any
Y such that (g · X,Y )

d
= (X,Y ) for all g 2 G, M(X) contains all relevant information for

predicting Y from X ; that is, Y ??M(X)X . Figure 2 illustrates the structure. These high-level
ideas, which are made rigorous in Appendix B, lead to the following functional representation
of invariant conditional distributions.

THEOREM 7. Let X and Y be random elements of Borel spaces X and Y , respectively,
and G a compact group acting measurably on X . Assume that PX is G-invariant, and pick a
maximal invariant M : X ! S , with S another Borel space. Then PY |X is G-invariant if and
only if there exists a measurable function f : [0,1]⇥ S ! Y such that

(X,Y )
a.s.
=
�
X,f(⌘,M(X))

�
with ⌘ ⇠ Unif[0,1] and ⌘??X .(14)

Theorem (Our version)

If Y is Borel, then Law[X ,Y ] is conditionally ∼-invariant iff there exists a
measurable function f : X/∼⊗ [0, 1] → Y such that

(X ,Y )
a.s.
= (X , f (q(X ), η)) where η ∼ Uniform(0, 1) with η ⊥⊥ X

(More precisely, both statements should refer to the existence of an extension of the

underlying probability space that admits suitable choices of η and f )

Possibly better to express entirely via Markov kernels
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Upcoming work

Equivariant stochastic neural networks in Markov categories

Rob Cornish

February 6, 2024

1 Introduction
• Can handle: actions of compact groups, free and transitive group actions (e.g. translations),

compositions of these built (potentially recursively) out of semidirect products of these, as
well as more exotic choices such as inductive limits. (What about subgroups?)

• Not only better empirical results, but greater ease of presentation and simpler proofs

2 Preliminaries

2.1 Markov categories
Definition 2.1. A Markov category [Fri20] (see also [Gol02; CJ19]) is a semicartesian h Confirm
with Paolo i symmetric monoidal category (C,⌦, I) such that every object X in C is equipped with
a commutative comonoid structure copyX : X ! X ⌦X and delX : X ! I that is suitably h Clarify
i compatible with ⌦ and I.

String diagrams As for all symmetric monoidal categories, the morphisms in CD categories
and Markov categories can be expressed in terms of string diagrams [Sel10]. We will follow the
conventions of [CJ19] and [FR20] when denoting these. In particular, we will use the following
suggestive notation for the key structural morphisms:

X

X X

:= copyX

XX

X X
:= delX

I

X

X

X

:= idX

X

X

:= idI

I

I

where idI and idX denotes the corresponding identity morphisms, and the dashed box indicates
the empty diagram. We will also denote arrows p : I ! X as triangular boxes in the following
way:

:=
p

p

I

XX

1
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