# Normalising flows and continuously indexed flows for machine learning

Rob Cornish

Department of Statistics, University of Oxford

December 10, 2021

- Normalising flows overview
- 2 Variational inference
- Oensity estimation
- Practical implementations
- Limitations
- Ontinuously-indexed flows



It is often important to parameterise an expressive families of densities

Key tasks:

- Variational inference: find  $\operatorname{argmin}_{\phi} \operatorname{KL}(q_{\phi} \parallel p(\cdot \mid \overline{X}))$
- Density estimation: determine  $p_{\text{data}}$  from  $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} p_{\text{data}}$

Normalising flows use neural networks to parameterise families of diffeomorphisms, which induce densities via the change-of-variables formula

Parameterise a family of diffeomorphisms  $f_{\psi}$  and choose a fixed noise distribution  $p_Z$ 

Define model  $p_{\psi}$  to be the W marginal of the following generative process:

$$Z \sim p_Z$$
  $W \coloneqq f_{\psi}(Z)$ 

This gives a procedure for sampling from  $p_{\psi}$ 

Can also compute densities via change-of-variables:

$$p_{\psi}(w) = p_{Z}(f_{\psi}^{-1}(w)) \left| \det \mathrm{D} f_{\psi}^{-1}(w) \right|$$

where  $Df_{\psi}^{-1}(w)$  denotes the Jacobian of  $f_{\psi}^{-1}$  evaluated at w.

# Variational inference

Assume a Bayesian model  $p_{\overline{X},Y}$  with prior  $p_Y$  and likelihood  $p_{\overline{X}|Y}$ , e.g.

$$p_{\overline{X},Y}(\overline{x},y) = p_Y(y) \prod_{i=1}^n p_{X|Y}(x_i \mid y)$$

Observe data  $\overline{X} = (X_1, \dots, X_n)$ , and seek posterior  $p_{Y|\overline{X}}(\cdot | \overline{X})$ 

Variational inference: (non-amortised)

- **(**) Posit a family of approximate posteriors  $q_{\phi}$  on Y-space
- Approximate the true posterior via

$$\operatorname{argmin}_{\phi} \mathsf{KL}(q_{\phi} \parallel p_{Y \mid \overline{X}}(\cdot \mid \overline{X}))$$

For high-quality inference, expressiveness of  $q_{\phi}$  is key; otherwise  $\min_{\phi} \mathsf{KL}(q_{\phi} \parallel p_{Y|\overline{X}}(\cdot \mid \overline{X}))$  will be large (for complex posteriors)

One approach is mean-field:

$$q_{\phi}(y) = \prod_{i=1}^{\dim(Y)} q_i(y_i; \phi),$$

where e.g.  $\phi = (\overline{\mu}, \overline{\sigma})$  and  $q_i(y_i; \phi) = \text{Normal}(y_i; \mu_i, \sigma_i)$ 

Can rewrite as

$$q_{\phi}(y) = \operatorname{Normal}(y; \overline{\mu}, \overline{\sigma} I),$$

so unimodal and axis-aligned, i.e. fairly limited expressiveness

### Normalising flows for variational inference

Key idea of Rezende and Mohamed [2015]: use normalising flows to parameterise a more expressive approximate posterior  $q_{\phi}$ 

In particular, take  $q_{\phi}$  to be distribution of Y, where

$$Z \sim p_Z \qquad Y \coloneqq f_{\phi}(Z)$$

#### with $f_{\phi}$ a diffeomorphism



# The evidence lower bound (ELBO)

Can compute

$$egin{aligned} \mathsf{KL}(q_\phi \parallel p_{Y \mid \overline{X}}(\cdot \mid \overline{X})) &= -\int q_\phi(y) \log rac{p_{Y \mid \overline{X}}(y \mid X)}{q_\phi(y)} \, dy \ &= -\int q_\phi(y) \, \left(\log rac{p_{\overline{X},Y}(\overline{X},y)}{q_\phi(y)} - \log p_{\overline{X}}(\overline{X})
ight) \, dy \ &= -\int q_\phi(y) \, \log rac{p_{\overline{X},Y}(\overline{X},y)}{q_\phi(y)} \, dy + \log p_{\overline{X}}(\overline{X}), \end{aligned}$$

so that

$$\operatorname{argmin}_{\phi} \mathsf{KL}(q_{\phi} \parallel p_{Y \mid \overline{X}}(\cdot \mid \overline{X})) = \operatorname{argmax}_{\phi} \underbrace{\int q_{\phi}(y) \log \frac{p_{\overline{X}, Y}(\overline{X}, y)}{q_{\phi}(y)} \, dy}_{=:\mathsf{ELBO}(\phi)}$$

# Optimising the ELBO

A general strategy for optimising the ELBO is stochastic gradient ascent

For normalising flows, since  $q_{\phi}$  is the pushforward of  $p_Z$  by  $f_{\phi}$ ,

$$\begin{split} \mathsf{ELBO}(\phi) &\coloneqq \int q_{\phi}(y) \log \frac{p_{\overline{X},Y}(\overline{X},y)}{q_{\phi}(y)} \, dy \\ &= \int p_{Z}(z) \log \frac{p_{\overline{X},Y}(\overline{X},f_{\phi}(z))}{q_{\phi}(f_{\phi}(z))} \, dz \end{split}$$

By differentiating under the integral sign,

$$abla_{\phi} \operatorname{\mathsf{ELBO}}(\phi) = \int p_{Z}(z) \, 
abla_{\phi} \log rac{p_{\overline{X},Y}(\overline{X},f_{\phi}(z))}{q_{\phi}(f_{\phi}(z))} \, dz,$$

so that if  $Z \sim p_Z$ , then  $\nabla_{\phi} \log \frac{p_{\overline{X},Y}(\overline{X}, f_{\phi}(Z))}{q_{\phi}(f_{\phi}(Z))}$  is an unbiased estimate of  $\nabla_{\phi} \text{ELBO}(\phi)$  suitable for optimisation

# Summary

When using normalising flows for variational inference:

- Choose  $p_Z$  and parameterise  $f_\phi$
- **3** Sample  $Z \sim p_Z$  and compute  $\nabla_{\phi} \log \frac{p_{\overline{X},Y}(\overline{X}, f_{\phi}(Z))}{q_{\phi}(f_{\phi}(Z))}$

• Update  $\phi$  via stochastic gradient ascent

In practice:

- Use neural network for  $f_{\phi}$  (can for  $p_Z$  also if reparameterisable)
- Obtain  $\phi$  gradient via autodiff
- Must be able to sample efficiently from  $q_{\phi}$  (i.e. compute  $f_{\phi}(z)$ )
- Only need to be able to compute efficiently

$$q_{\phi}(f_{\phi}(Z)) = p_{Z}(f_{\phi}^{-1}(f_{\phi}(Z))) \left| \det \mathrm{D}f_{\phi}^{-1}(f_{\phi}(Z)) \right| = p_{Z}(Z) \left| \det \mathrm{D}f_{\phi}(Z) \right|^{-1}$$

(or an unbiased estimate of its log), i.e. not  $f_{\phi}^{-1}(y)$  given only y • Can amortise this procedure

12 / 42

# Density estimation

Aim: determine  $p_{\text{data}}$  from samples  $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} p_{\text{data}}$ 

Applications:

- Out-of-distribution detection
- Synthetic data generation



Kernel density estimation: approximate density of  $p_{\rm data}$  by

$$p(x) \coloneqq \frac{1}{n} \sum_{i=1}^{n} k(x - X_i),$$

where k is e.g. a scaled Gaussian



Source: blogs.sas.com

- Curse of dimensionality  $\Rightarrow$  different strategies needed in high dimensions
- Neural networks have had great success with high-dimensional data e.g. in classification problems
- How can we leverage this expressiveness for density estimation?

Alternatively, consider projecting  $p_{\rm data}$  onto a model family, i.e. estimate is

 $\operatorname{argmin}_{\theta\in\Theta}\mathsf{KL}(\mathit{p}_{\mathrm{data}}\parallel \mathit{p}_{\theta})$ 

where  $p_{\theta}$  is a parametrised density

As with variational inference, expressiveness of  $p_{\theta}$  is clearly important

### Normalising flows for density estimation

A popular idea is to use normalising flows to define  $p_{\theta}$ , i.e.  $p_{\theta}$  is the X marginal of the following generative process:

$$Z \sim p_Z$$
  $X := f_{\theta}(Z),$ 

where  $f_{\theta}$  is a parameterised diffeomorphism

This gives a procedure for sampling from  $p_{\theta}$ 

Can also compute densities via change-of-variables:

$$p_{\theta}(x) = p_{Z}(f_{\theta}^{-1}(x)) \left| \det \mathrm{D}f_{\theta}^{-1}(x) \right|$$

where  $Df_{\theta}^{-1}(x)$  denotes the Jacobian of  $f_{\theta}^{-1}$  evaluated at x

A nice feature is that this is often exactly tractable by construction

By differentiating under the integral sign

$$egin{aligned} 
abla_ heta\, \mathsf{KL}(p_{ ext{data}}\parallel p_ heta) &= -
abla_ heta\, \int p_{ ext{data}}(x)\,\lograc{p_ heta(x)}{p_{ ext{data}}(x)}\,dx \ &= -\int p_{ ext{data}}(x)\,
abla_ heta\,\log p_ heta(x)\,dx, \end{aligned}$$

so if  $X \sim p_{\text{data}}$ , then  $-\nabla_{ heta} \log p_{ heta}(X)$  is an unbiased gradient estimate

This allows finding  $\operatorname{argmin}_{\theta} \mathsf{KL}(p_{\operatorname{data}} \parallel p_{\theta})$  by stochastic gradient descent

# Summary

When using normalising flows for density estimation:

- Choose  $p_Z$  and parameterise  $f_\theta$
- **2** Obtain  $X \sim p_{ ext{data}}$  and compute  $abla_{ heta} \log p_{ heta}(X)$
- **③** Update  $\theta$  via stochastic gradient descent

In practice:

- Use neural network for  $f_{\theta}$
- Obtain  $\theta$  gradient via autodiff
- Must be able to compute efficiently

$$p_{\theta}(x) = p_{Z}(f_{\theta}^{-1}(x)) \left| \det \mathrm{D}f_{\theta}^{-1}(x) \right|$$

(or an unbiased estimate of  $\nabla_{\theta} \log p_{\theta}(x)$ )

• Don't need to be able to sample from  $p_{ heta}$ 

### Some flow architectures

Want to parameterise a family of diffeomorphisms  $f_{\psi}$ 

Key requirements:

- $f_{\psi}$  must be invertible (in practice this may be implicit)
- Tractable log Jacobian (or tractable unbiased estimate)

Can compose flows to obtain greater complexity

For  $w \in \mathbb{R}^D$  and  $1 \le d < D$ , Dinh et al. [2017] defines

$$f_{\psi}(w) = \begin{bmatrix} w_{1:d} \\ \exp(s(w_{1:d};\psi)) \odot w_{d+1:D} + t(w_{1:d};\psi) \end{bmatrix}$$

where  $s, t: \mathbb{R}^d \to \mathbb{R}^{D-d}$  are unconstrained neural networks

Clear that this is invertible

Jacobian matrix is lower-triangular, so determinant is tractable

# Inverse Autoregressive Flow / Masked Autoregressive Flow

For  $w \in \mathbb{R}^D$ , define

$$f_i(w;\psi) = \exp(s_i(w_{1:i-1};\psi)) \odot w_i + t_i(w_{1:i-1};\psi),$$

where  $s_i, t_i : \mathbb{R}^{i-1} \to \mathbb{R}$  are unconstrained neural networks, and set

$$f_\psi(w)\coloneqq egin{bmatrix} f_1(w;\psi)\dots\ f_D(w;\psi)\end{bmatrix}$$

Again invertible and triangular Jacobian matrix

For efficiency (in one direction), MADE [Germain et al., 2015] provides a way to parameterise an autoregressive neural network

Used by Kingma et al.  $\left[2016\right]$  (for VI) and Papamakarios et al.  $\left[2017\right]$  (for density estimation)

Rob Cornish (University of Oxford)

Triangular Jacobians seem to reduce expressiveness

Alternative strategy [Behrmann et al., 2019, Chen et al., 2020]: if  $g_{\psi}: \mathbb{R}^D \to \mathbb{R}^D$  has Lip  $g_{\psi} < 1$ , then we get a diffeomorphism

$$f_{\psi}(w) \coloneqq w + g_{\psi}(w)$$

Can ensure a neural network  $g_{\psi}$  is Lipschitz via spectral normalisation

Can estimate Jacobians unbiasedly by expanding as a matrix power series, and using debiasing techniques plus the Skilling-Hutchinson trace estimator

Can be inverted numerically by Banach Fixed Point theorem



# Limitations of normalising flows

Diffeomorphisms preserve topological properties of their input space, e.g.

- Number of connected components
- Number of "holes"
- How the space is "knotted"

Intuitively suggests that if X = f(Z) then the supports of X and Z will share the same topological properties



#### Theorem (Cornish et al. [2020])

If supp  $p_Z$  is not homeomorphic to supp  $p_{data}$ , then a sequence of diffeomorphisms  $f_n$  can yield  $f_n(Z) \to p_{data}$  in distribution only if

 $\max\{\operatorname{Lip} f_n, \operatorname{Lip} f_n^{-1}\} \to \infty$ 

Convergence in distribution straightforwardly implies a version in terms of being "approximately not homeomorphic"

General consequence: numerical noninvertibility (observed by Behrmann et al. [2020])



# Consequences for Residual Flows

The following densities were learned using a Gaussian prior with a 10-layer Residual Flow [Behrmann et al., 2019, Chen et al., 2020]



Figure: Darker regions indicate lower density. Data shown in black.

# Continuously-Indexed Normalizing Flows (for density estimation)

To gain expressiveness over baseline flows, continuously-indexed flows (CIFs) now model the data as the X-marginal of

$$Z \sim p_Z, \qquad U \mid Z \sim p_{U|Z}(\cdot \mid Z), \qquad X \coloneqq F(Z; U)$$

where

- U is a continuous index variable
- $p_{U|Z}$  is a (parametrized) conditional distribution
- $F(\cdot; u)$  is a diffeomorphism for every u

Any existing normalizing flow f can be used to construct F, e.g. via

$$F(z; u) \coloneqq f\left(e^{s(u)} \odot z + t(u)\right)$$

for neural networks s, t outputting values in Z-space

# Multi-Layer CIFs

An *L*-layer CIF is obtained by stacking the single-layer model:

$$Z_{0} \sim p_{Z_{0}},$$

$$U_{1} \sim p_{U_{1}|Z_{0}}(\cdot | Z_{0}), \qquad Z_{1} \coloneqq F_{1}(Z_{0}; U_{1}),$$

$$...$$

$$U_{L} \sim P_{U_{L}|Z_{L-1}}(\cdot | Z_{L-1}), \qquad X \coloneqq F_{L}(Z_{L-1}; U_{L})$$

$$(U_{1}) \qquad (U_{L-1}) \qquad (U_{L}) \qquad (U_{L}$$

Figure: Graphical multi-layer CIF generative model

The marginal  $p_X$  is intractable, but the *joint*  $p_{X,U_{1:L}}$  has a closed-form, e.g. for a single layer

$$p_{X,U}(x,u) = p_Z(F^{-1}(x;u))p_{U|Z}(u \mid F^{-1}(x;u))|\det \mathrm{D}F^{-1}(x;u)|$$

Given an inference model  $q_{U_{1,l}|X}$ , we can use the *ELBO* for training:

$$\mathcal{L}(x) \coloneqq \mathbb{E}_{u_{1:L} \sim q_{U_{1:L}|X}(\cdot|x)} \left[ \log \frac{p_{X,U_{1:L}}(x,u_{1:L})}{q_{U_{1:L}|X}(u_{1:L}|x)} \right] \leq \log p_X(x)$$

At test time, we can estimate  $\log p_X(x)$  to arbitrary precision using an *m*-sample *IWAE* estimate with  $m \gg 1$ 

# Inference model

To obtain an efficient inference model  $q_{U_{1:L}|X}$ , we exploit the *conditional* independence structure of  $p_{U_{1:L}|X}$  from the forward model:

$$egin{aligned} & Z_L\coloneqq X, \ & U_L\sim q_{U_L\mid Z_L}(\cdot\mid Z_L), & Z_{L-1}\coloneqq F_L^{-1}(Z_L;U_L), \ & \dots & \ & \dots & \ & U_1\sim q_{U_1\mid Z_1}(\cdot\mid Z_1), & Z_0\coloneqq F_1^{-1}(Z_1;U_1) \end{aligned}$$

In other words,

$$q_{U_{1:L}|X}(u_{1:L} \mid x) := \prod_{\ell=1}^{L} q_{U_{\ell}|Z_{\ell}}(u_{\ell} \mid z_{\ell})$$

This induces a natural weight-sharing scheme between the forward and inverse models, since the same  $F_{\ell}$  are used in both cases

Rob Cornish (University of Oxford)

Normalising flows and CIFs

34 / 42

Intuitively, the additional flexibility afforded by  $p_{U|Z}$  allows a CIF to "clean up" mass that would be misplaced by a single bijection

**Proposition:** Under mild conditions on the target and *F*, there exists  $p_{U|Z}$  such that the model  $p_X$  has the same support as the target  $p_X^*$ 

**Proposition:** If  $F(z; \cdot)$  is surjective for each z, there exists  $p_{U|Z}$  such that  $p_X$  matches  $p_X^*$  exactly

CIFs may be understood as a hybrid between standard normalizing flow and VAE density models:



In all cases, X = F(Z; U) for some family of bijections F

#### 2D ResFlow Experiments







# 2D Masked Autoregressive Flow (MAF) Experiments



Figure: Density models learned by a 20-layer MAF (above) and a 5-layer CIF-MAF (below) for 2-D target distributions. The far right column uses a higher-capacity model for each method.

Rob Cornish (University of Oxford)

Normalising flows and CIFs

38 / 42

Table: Test set bits per dimension. Lower is better.

|                                  | MNIST | CIFAR-10       |
|----------------------------------|-------|----------------|
| ResFlow (small)<br>ResFlow (big) | 1.074 | 3.474<br>3.422 |
| CIF-ResFlow                      | 0.922 | 3.334          |

NB: These ResFlows were smaller than those from Chen et al. [2019]

We obtained similar improvements on several other problems and flow models









Figure: Joint work with Anthony Caterini, George Deligiannidis, Arnaud Doucet, and Dino Sejdinovic

40 / 42

- Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International conference on machine learning*, pages 1530–1538. PMLR, 2015.
- Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th International Conference on Learning Representations, ICLR, 2017.
- Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for distribution estimation. In *International Conference on Machine Learning*, pages 881–889. PMLR, 2015.
- Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. *Advances in neural information processing systems*, 29:4743–4751, 2016.
- George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, pages 2335–2344, 2017.

- Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible residual networks, 2019.
- Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for invertible generative modeling, 2020.
- Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity constraints with continuously indexed normalising flows. In *International Conference on Machine Learning*, pages 2133–2143, 2020.
- Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Understanding and mitigating exploding inverses in invertible neural networks. *arXiv preprint arXiv:2006.09347*, 2020.
- Ricky T. Q. Chen, Jens Behrmann, David K Duvenaud, and Joern-Henrik Jacobsen. Residual flows for invertible generative modeling. In *Advances in Neural Information Processing Systems*, volume 32, 2019.