Normalising flows and continuously indexed flows for

machine learning

Rob Cornish

Department of Statistics, University of Oxford

December 10, 2021

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Outline

@ Normalising flows overview
@ Variational inference

© Density estimation

@ Practical implementations
@ Limitations

@ Continuously-indexed flows

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Overview

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10,

It is often important to parameterise an expressive families of densities

Key tasks:
e Variational inference: find argmin, KL(gy || p(- | X))
@ Density estimation: determine pgata from Xi, ..., X, hid- Pdata

Normalising flows use neural networks to parameterise families of
diffeomorphisms, which induce densities via the change-of-variables formula

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Parameterise a family of diffeomorphisms f;, and choose a fixed noise
distribution pz

Define model py, to be the W marginal of the following generative process:
Z ~ pz W = f,(2)
This gives a procedure for sampling from py,
Can also compute densities via change-of-variables:
pu(w) = pz(7; (w)) |det D (w)

where wa_l(w) denotes the Jacobian of fw_l evaluated at w.

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Variational inference

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2

Overview

Assume a Bayesian model py ,, with prior py and likelihood py Px|y: €&

Px.y(X.y) = pv(y HPX\Y xi | y)

Observe data X = (X, ..., X,), and seek posterior Pyx(- | X)

Variational inference: (non-amortised)

© Posit a family of approximate posteriors g4 on Y-space
@ Approximate the true posterior via

argming KL(qs || pyx(- | X))

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Mean-field approximation

For high-quality inferenie, expressiveness of g, is key; otherwise
ming KL(gy || py‘y(- | X)) will be large (for complex posteriors)

One approach is mean-field:
dim(Y)
aw() =[] i)
i=1
where e.g. ¢ = (,7) and qi(yi; ¢) = Normal(y;; u1;, 07)
Can rewrite as

ds(y) = Normal(y; 1z, /),

so unimodal and axis-aligned, i.e. fairly limited expressiveness

Rob Cornish (University of Oxford)

Normalising flows and CIFs

December 10, 2021

Normalising flows for variational inference

Key idea of Rezende and Mohamed [2015]: use normalising flows to
parameterise a more expressive approximate posterior g,

In particular, take gy to be distribution of Y, where
Z ~ Pz Y = f¢(Z)

with f, a diffeomorphism

Planar Radlal

Olekin@on

"‘
-
- N\ Dok o B
-.-‘o\ | =

Unit Gaussian

Uniform

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

The evidence lower bound (ELBO)

Can compute

X
ot i
—[at (AN g) o
/ XY((y))dy+logr(X)
so that
_ X,
argmin,, KL(qy || Py|7(' | X)) = argmax¢/q¢(y) log W dy
=ELBO(¢)

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Optimising the ELBO

A general strategy for optimising the ELBO is stochastic gradient ascent

For normalising flows, since g is the pushforward of pz by f,

Y?
ELBO(¢) = /q¢(y) |OgW dy

) Py (Xoful2))
= [pate) 08 (B

By differentiating under the integral sign,

px.v (X, f5(2))

wh@)

V4 ELBO() = [pa(2)Vislog

so that if Z ~ pz, then Vylog % is an unbiased estimate of

V4 ELBO(¢) suitable for optimisation

Rob Cornish (University of Oxford) Normalising flows and CIFs

December 10, 2021 11/42

When using normalising flows for variational inference:
© Choose pz and parameterise fy

@ Sample Z ~ pz and compute V4 log %

© Update ¢ via stochastic gradient ascent

In practice:
@ Use neural network for fy (can for pz also if reparameterisable)
@ Obtain ¢ gradient via autodiff
@ Must be able to sample efficiently from gy (i.e. compute f,(z))
@ Only need to be able to compute efficiently

a6(f5(2)) = pz(f;*(f5(2))) |det D (£5(2))| = pz(Z) |det Dfy(Z)|

or an unbiased estimate of its log), i.e. not £, *(y) given only y
¢
@ Can amortise this procedure

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 12 /42

Density estimation

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2

=

Aim: determine pgat, from samples Xi,..., X, ~ pgata

Applications:
@ Out-of-distribution detection

@ Synthetic data generation

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

lllustrative approach

Kernel Density Estimate as Weighted Sum of Component Densities

Kernel density estimation:
approximate density of pgata by

p(x) = ka—

where k is e.g. a scaled Gaussian

Density

KDE

Components

Source: blogs.sas.com

Normalising flows and CIFs December 10, 2

Rob Cornish (University of Oxford)

blogs.sas.com

Curse of dimensionality = different strategies needed in high dimensions

Neural networks have had great success with high-dimensional data e.g. in
classification problems

How can we leverage this expressiveness for density estimation?

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

High-level strategy

Alternatively, consider projecting pgata onto a model family, i.e. estimate is

argmingce KL(Pdata || Po)

where pyg is a parametrised density

As with variational inference, expressiveness of py is clearly important

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 17 /42

Normalising flows for density estimation

A popular idea is to use normalising flows to define py, i.e. pg is the X
marginal of the following generative process:

Zepr X=6(2),
where fy is a parameterised diffeomorphism

This gives a procedure for sampling from pg

Can also compute densities via change-of-variables:
po(x) = pz(f; 1(x)) |det Df; ()]
where Df; !(x) denotes the Jacobian of £, ! evaluated at x

A nice feature is that this is often exactly tractable by construction

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Gradient estimation

By differentiating under the integral sign

X
Vo KL(paata || P) = Vo / Paatalx) Tog P20 _ g
pdata(X)

= - / Pdata(x) Vg log pg(x) dx,
so if X ~ pgata, then —Vglog pg(X) is an unbiased gradient estimate

This allows finding argming KL(pqata || po) by stochastic gradient descent

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 19 /42

When using normalising flows for density estimation:
@ Choose py and parameterise fy
@ Obtain X ~ pgata and compute —Vy log py(X)
© Update 6 via stochastic gradient descent

In practice:
@ Use neural network for fy
@ Obtain 6 gradient via autodiff

@ Must be able to compute efficiently

pol(x) = pz(f;(x)) |det DF; ()|

(or an unbiased estimate of Vg log ps(x))

@ Don't need to be able to sample from py

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

Some flow architectures

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2

Key considerations

Want to parameterise a family of diffeomorphisms f,,

Key requirements:

e f, must be invertible (in practice this may be implicit)

@ Tractable log Jacobian (or tractable unbiased estimate)

Can compose flows to obtain greater complexity

Rob Cornish (University of Oxford)

Normalising flows and CIFs December 10, 2021 22 /42

RealNVP

For w € RP and 1 < d < D, Dinh et al. [2017] defines

- | |
exp(s(wi.d; 1)) © Wat1.p + t(wi.d;)
where s, t : R — RP~9 are unconstrained neural networks
Clear that this is invertible

Jacobian matrix is lower-triangular, so determinant is tractable

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 23 /42

Inverse Autoregressive Flow / Masked Autoregressive Flow

For w € RP, define
fi(w;) = exp(si(wi:i—1; %)) © w; + ti(wr.j—1; %),
where s;, t; : R"~1 — R are unconstrained neural networks, and set

fi(w;)
fy(w) = :
fo(w;)

Again invertible and triangular Jacobian matrix

For efficiency (in one direction), MADE [Germain et al., 2015] provides a
way to parameterise an autoregressive neural network

Used by Kingma et al. [2016] (for VI) and Papamakarios et al. [2017] (for
density estimation)

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 24 /42

Residual Flows

Triangular Jacobians seem to reduce expressiveness

Alternative strategy [Behrmann et al., 2019, Chen et al., 2020]: if
8y : RP — RP has Lip gy < 1, then we get a diffeomorphism

fp(w) = w + gy(w)

Can ensure a neural network gy, is Lipschitz via spectral normalisation

Can estimate Jacobians unbiasedly by expanding as a matrix power series,
and using debiasing techniques plus the Skilling-Hutchinson trace estimator

Can be inverted numerically by Banach Fixed Point theorem

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 25 /42

Limitations of normalising flows

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 26 /42

Diffeomorphisms preserve topological properties of their input space, e.g.
@ Number of connected components
@ Number of “holes”

@ How the space is “knotted”

Intuitively suggests that if X = f(Z) then the supports of X and Z will
share the same topological properties

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 27 /42

Precise result

Theorem (Cornish et al. [2020])

If supp pz is not homeomorphic to supp pgata, then a sequence of
diffeomorphisms f,, can yield f,(Z) — pqata in distribution only if

max{Lip f,, Lip £, 1} — oo

Convergence in distribution straightforwardly implies a version in terms of
being “approximately not homeomorphic”

General consequence: numerical noninvertibility (observed by Behrmann
et al. [2020])

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 28 /42

Consequences for Residual Flows

The following densities were learned using a Gaussian prior with a 10-layer
Residual Flow [Behrmann et al., 2019, Chen et al., 2020]

Figure: Darker regions indicate lower density. Data shown in black.

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 29 /42

Continuously-Indexed Normalizing Flows

(for density estimation)

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 30/ 42

Continuously-Indexed Flow Layer

To gain expressiveness over baseline flows, continuously-indexed flows
(CIFs) now model the data as the X-marginal of

Z~ pz, UlZ~pyz(-|2), X =F(Z,U)

where
@ U is a continuous index variable
® py|z is a (parametrized) conditional distribution

e F(-; u) is a diffeomorphism for every u
Any existing normalizing flow f can be used to construct F, e.g. via
F(z;u)="f <es(”) Oz+ t(u)>

for neural networks s, t outputting values in Z-space

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 31/42

Multi-Layer CIFs

An L-layer CIF is obtained by stacking the single-layer model:

ZO ~ Pz,
Ui ~ puz(- | Z0), 21 = F1(Zo; Ur),

U~ Pyz, (1 ZL1), Xi=F(Zi-1; Ur)

NN
O

Figure: Graphical multi-layer CIF generative model

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 32/42

Training and inference

The marginal px is intractable, but the joint px ,, has a closed-form, e.g.
for a single layer

px,u(x, u) = pz(F~*(x; u))pujz(u | F71(x; u))| det DF~*(x; u)|

Given an inference model qy, ,|x, we can use the ELBO for training:

L(x) =E P, (X L)

ul:LNqul:L‘X(.‘X) |og qU1;L|X(u1:L | X)

< log px(x)

At test time, we can estimate log px(x) to arbitrary precision using an
m-sample IWAE estimate with m > 1

Rob Cornish (University of Oxford)

Normalising flows and CIFs

December 10, 2021 33 /42

Inference model

To obtain an efficient inference model gy, |x, we exploit the conditional
independence structure of py, | x from the forward model:

ZL = X,
UL ~ qu,z. (- | Z1), Zi 1= F (2 Uy),
Ui ~ quy 1z, (- | Z1), Zo = F{ Y (Z1; Uy)

In other words,

L
quy x (v | x) = H qu, 1z, (e | ze)
=1

This induces a natural weight-sharing scheme between the forward and
inverse models, since the same F, are used in both cases

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 34 /42

Benefits over Standard Flows

Intuitively, the additional flexibility afforded by pyz allows a CIF to “clean
up” mass that would be misplaced by a single bijection

Proposition: Under mild conditions on the target and F, there exists py,z
such that the model px has the same support as the target p}

Proposition: If F(z;) is surjective for each z, there exists Pu|z such that
px matches py exactly

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 35 /42

Comparison with Related Models

CIFs may be understood as a hybrid between standard normalizing flow
and VAE density models:

S

NF

In all cases, X = F(Z; U) for some family of bijections F

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 36 /42

2D ResFlow Experiments

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2

2D Masked Autoregressive Flow (MAF) Experiments

Figure: Density models learned by a 20-layer MAF (above) and a 5-layer
CIF-MAF (below) for 2-D target distributions. The far right column uses a

higher-capacity model for each method.
Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

High-Dimensional ResFlow Experiments

Table: Test set bits per dimension. Lower is better.

MNIST CIFAR-10

ResFlow (small) 1.074 3.474
ResFlow (big) 1.018 3.422
CIF-ResFlow 0.922 3334

NB: These ResFlows were smaller than those from Chen et al. [2019]

We obtained similar improvements on several other problems and flow

models

December 10, 2021

Normalising flows and CIFs

Rob Cornish (University of Oxford)

Figure: Joint work with Anthony Caterini, George Deligiannidis, Arnaud Doucet,
and Dino Sejdinovic

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021

References |

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing

flows. In International conference on machine learning, pages 1530-1538.
PMLR, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using

real NVP. In 5th International Conference on Learning Representations, ICLR,
2017.

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. Made:
Masked autoencoder for distribution estimation. In International Conference on
Machine Learning, pages 881-889. PMLR, 2015.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, llya Sutskever, and
Max Welling. Improved variational inference with inverse autoregressive flow.
Advances in neural information processing systems, 29:4743-4751, 2016.

George Papamakarios, Theo Pavlakou, and lain Murray. Masked autoregressive

flow for density estimation. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 2335-2344, 2017.

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 41/42

References Il

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and
Jorn-Henrik Jacobsen. Invertible residual networks, 2019.

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jorn-Henrik Jacobsen.
Residual flows for invertible generative modeling, 2020.

Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet.
Relaxing bijectivity constraints with continuously indexed normalising flows. In
International Conference on Machine Learning, pages 2133-2143, 2020.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jorn-Henrik
Jacobsen. Understanding and mitigating exploding inverses in invertible neural
networks. arXiv preprint arXiv:2006.09347, 2020.

Ricky T. Q. Chen, Jens Behrmann, David K Duvenaud, and Joern-Henrik

Jacobsen. Residual flows for invertible generative modeling. In Advances in
Neural Information Processing Systems, volume 32, 2019.

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 42 /42

	Overview
	Variational inference
	Density estimation
	Some flow architectures
	Limitations of normalising flows
	Continuously-Indexed Normalizing Flows (for density estimation)

