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Overview
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It is often important to parameterise an expressive families of densities

Key tasks:
e Variational inference: find argmin, KL(gy || p(- | X))
@ Density estimation: determine pgata from Xi, ..., X, hid- Pdata

Normalising flows use neural networks to parameterise families of
diffeomorphisms, which induce densities via the change-of-variables formula
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Parameterise a family of diffeomorphisms f;, and choose a fixed noise
distribution pz

Define model py, to be the W marginal of the following generative process:
Z ~ pz W = f,(2)
This gives a procedure for sampling from py,
Can also compute densities via change-of-variables:
pu(w) = pz(7; (w)) |det D (w)

where wa_l(w) denotes the Jacobian of fw_l evaluated at w.
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Variational inference
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Overview

Assume a Bayesian model py ,, with prior py and likelihood py Px|y: €&

Px.y(X.y) = pv(y HPX\Y xi | y)

Observe data X = (X, ..., X,), and seek posterior Pyx(- | X)

Variational inference: (non-amortised)

© Posit a family of approximate posteriors g4 on Y-space
@ Approximate the true posterior via

argming KL(qs || pyx(- | X))
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Mean-field approximation

For high-quality inferenie, expressiveness of g, is key; otherwise
ming KL(gy || py‘y(- | X)) will be large (for complex posteriors)

One approach is mean-field:
dim(Y)
aw() =[] i)
i=1
where e.g. ¢ = (,7) and qi(yi; ¢) = Normal(y;; u1;, 07)
Can rewrite as

ds(y) = Normal(y; 1z, /),

so unimodal and axis-aligned, i.e. fairly limited expressiveness
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Normalising flows for variational inference

Key idea of Rezende and Mohamed [2015]: use normalising flows to
parameterise a more expressive approximate posterior g,

In particular, take gy to be distribution of Y, where
Z ~ Pz Y = f¢(Z)

with f, a diffeomorphism
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The evidence lower bound (ELBO)

Can compute

X
ot i
—[at ( AN g ) o
/ XY((y) )dy+logr(X)
so that
_ X,
argmin,, KL(qy || Py|7(' | X)) = argmax¢/q¢(y) log W dy
=ELBO(¢)

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021



Optimising the ELBO

A general strategy for optimising the ELBO is stochastic gradient ascent

For normalising flows, since g is the pushforward of pz by f,

Y?
ELBO(¢) = /q¢(y) |OgW dy

) Py (Xoful2))
= [ pate) 08 (B

By differentiating under the integral sign,

px.v (X, f5(2))

wh@)

V4 ELBO() = [ pa(2)Vislog

so that if Z ~ pz, then Vylog % is an unbiased estimate of

V4 ELBO(¢) suitable for optimisation

Rob Cornish (University of Oxford) Normalising flows and CIFs

December 10, 2021 11/42



When using normalising flows for variational inference:
© Choose pz and parameterise fy

@ Sample Z ~ pz and compute V4 log %

© Update ¢ via stochastic gradient ascent

In practice:
@ Use neural network for fy (can for pz also if reparameterisable)
@ Obtain ¢ gradient via autodiff
@ Must be able to sample efficiently from gy (i.e. compute f,(z))
@ Only need to be able to compute efficiently

a6(f5(2)) = pz(f;*(f5(2))) |det D (£5(2))| = pz(Z) |det Dfy(Z)|

or an unbiased estimate of its log), i.e. not £, *(y) given only y
¢
@ Can amortise this procedure
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Density estimation
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=

Aim: determine pgat, from samples Xi,..., X, ~ pgata

Applications:
@ Out-of-distribution detection

@ Synthetic data generation
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lllustrative approach

Kernel Density Estimate as Weighted Sum of Component Densities

Kernel density estimation:
approximate density of pgata by

p(x) = ka—

where k is e.g. a scaled Gaussian

Density

KDE

Components

Source: blogs.sas.com
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blogs.sas.com

Curse of dimensionality = different strategies needed in high dimensions

Neural networks have had great success with high-dimensional data e.g. in
classification problems

How can we leverage this expressiveness for density estimation?

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021



High-level strategy

Alternatively, consider projecting pgata onto a model family, i.e. estimate is

argmingce KL(Pdata || Po)

where pyg is a parametrised density

As with variational inference, expressiveness of py is clearly important

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 17 /42



Normalising flows for density estimation

A popular idea is to use normalising flows to define py, i.e. pg is the X
marginal of the following generative process:

Zepr  X=6(2),
where fy is a parameterised diffeomorphism

This gives a procedure for sampling from pg

Can also compute densities via change-of-variables:
po(x) = pz(f; 1(x)) |det Df; ()]
where Df; !(x) denotes the Jacobian of £, ! evaluated at x

A nice feature is that this is often exactly tractable by construction
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Gradient estimation

By differentiating under the integral sign

X
Vo KL(paata || P) = Vo / Paatalx) Tog P20 _ g
pdata(X)

= - / Pdata(x) Vg log pg(x) dx,
so if X ~ pgata, then —Vglog pg(X) is an unbiased gradient estimate

This allows finding argming KL(pqata || po) by stochastic gradient descent
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When using normalising flows for density estimation:
@ Choose py and parameterise fy
@ Obtain X ~ pgata and compute —Vy log py(X)
© Update 6 via stochastic gradient descent

In practice:
@ Use neural network for fy
@ Obtain 6 gradient via autodiff

@ Must be able to compute efficiently

pol(x) = pz(f;(x)) |det DF; ()|

(or an unbiased estimate of Vg log ps(x))

@ Don't need to be able to sample from py

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021



Some flow architectures
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Key considerations

Want to parameterise a family of diffeomorphisms f,,

Key requirements:

e f, must be invertible (in practice this may be implicit)

@ Tractable log Jacobian (or tractable unbiased estimate)

Can compose flows to obtain greater complexity
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RealNVP

For w € RP and 1 < d < D, Dinh et al. [2017] defines

- | |
exp(s(wi.d; 1)) © Wat1.p + t(wi.d; )
where s, t : R — RP~9 are unconstrained neural networks
Clear that this is invertible

Jacobian matrix is lower-triangular, so determinant is tractable
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Inverse Autoregressive Flow / Masked Autoregressive Flow

For w € RP, define
fi(w; ) = exp(si(wi:i—1; %)) © w; + ti(wr.j—1; %),
where s;, t; : R"~1 — R are unconstrained neural networks, and set

fi(w; )
fy(w) = :
fo(w; )

Again invertible and triangular Jacobian matrix

For efficiency (in one direction), MADE [Germain et al., 2015] provides a
way to parameterise an autoregressive neural network

Used by Kingma et al. [2016] (for VI) and Papamakarios et al. [2017] (for
density estimation)
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Residual Flows

Triangular Jacobians seem to reduce expressiveness

Alternative strategy [Behrmann et al., 2019, Chen et al., 2020]: if
8y : RP — RP has Lip gy < 1, then we get a diffeomorphism

fp(w) = w + gy(w)

Can ensure a neural network gy, is Lipschitz via spectral normalisation

Can estimate Jacobians unbiasedly by expanding as a matrix power series,
and using debiasing techniques plus the Skilling-Hutchinson trace estimator

Can be inverted numerically by Banach Fixed Point theorem
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Limitations of normalising flows
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Diffeomorphisms preserve topological properties of their input space, e.g.
@ Number of connected components
@ Number of “holes”

@ How the space is “knotted”

Intuitively suggests that if X = f(Z) then the supports of X and Z will
share the same topological properties
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Precise result

Theorem (Cornish et al. [2020])

If supp pz is not homeomorphic to supp pgata, then a sequence of
diffeomorphisms f,, can yield f,(Z) — pqata in distribution only if

max{Lip f,, Lip £, 1} — oo

Convergence in distribution straightforwardly implies a version in terms of
being “approximately not homeomorphic”

General consequence: numerical noninvertibility (observed by Behrmann
et al. [2020])
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Consequences for Residual Flows

The following densities were learned using a Gaussian prior with a 10-layer
Residual Flow [Behrmann et al., 2019, Chen et al., 2020]

Figure: Darker regions indicate lower density. Data shown in black.
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Continuously-Indexed Normalizing Flows

(for density estimation)

Rob Cornish (University of Oxford) Normalising flows and CIFs December 10, 2021 30/ 42



Continuously-Indexed Flow Layer

To gain expressiveness over baseline flows, continuously-indexed flows
(CIFs) now model the data as the X-marginal of

Z~ pz, UlZ~pyz(-|2), X =F(Z,U)

where
@ U is a continuous index variable
® py|z is a (parametrized) conditional distribution

e F(-; u) is a diffeomorphism for every u
Any existing normalizing flow f can be used to construct F, e.g. via
F(z;u)="f <es(”) Oz+ t(u)>

for neural networks s, t outputting values in Z-space
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Multi-Layer CIFs

An L-layer CIF is obtained by stacking the single-layer model:

ZO ~ Pz,
Ui ~ puz(- | Z0), 21 = F1(Zo; Ur),

U~ Pyz, (1 ZL1),  Xi=F(Zi-1; Ur)

NN
O

Figure: Graphical multi-layer CIF generative model
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Training and inference

The marginal px is intractable, but the joint px ,, has a closed-form, e.g.
for a single layer

px,u(x, u) = pz(F~*(x; u))pujz(u | F71(x; u))| det DF~*(x; u)|

Given an inference model qy, ,|x, we can use the ELBO for training:

L(x) =E P, (X L)

ul:LNqul:L‘X(.‘X) |og qU1;L|X(u1:L | X)

< log px(x)

At test time, we can estimate log px(x) to arbitrary precision using an
m-sample IWAE estimate with m > 1
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Inference model

To obtain an efficient inference model gy, |x, we exploit the conditional
independence structure of py, | x from the forward model:

ZL = X,
UL ~ qu,z. (- | Z1), Zi 1= F (2 Uy),
Ui ~ quy 1z, (- | Z1), Zo = F{ Y (Z1; Uy)

In other words,

L
quy x (v | x) = H qu, 1z, (e | ze)
=1

This induces a natural weight-sharing scheme between the forward and
inverse models, since the same F, are used in both cases
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Benefits over Standard Flows

Intuitively, the additional flexibility afforded by pyz allows a CIF to “clean
up” mass that would be misplaced by a single bijection

Proposition: Under mild conditions on the target and F, there exists py,z
such that the model px has the same support as the target p}

Proposition: If F(z;) is surjective for each z, there exists Pu|z such that
px matches py exactly
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Comparison with Related Models

CIFs may be understood as a hybrid between standard normalizing flow
and VAE density models:

S

NF

In all cases, X = F(Z; U) for some family of bijections F
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2D ResFlow Experiments
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2D Masked Autoregressive Flow (MAF) Experiments

Figure: Density models learned by a 20-layer MAF (above) and a 5-layer
CIF-MAF (below) for 2-D target distributions. The far right column uses a

higher-capacity model for each method.
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High-Dimensional ResFlow Experiments

Table: Test set bits per dimension. Lower is better.

MNIST  CIFAR-10

ResFlow (small) 1.074 3.474
ResFlow (big) 1.018 3.422
CIF-ResFlow 0.922 3334

NB: These ResFlows were smaller than those from Chen et al. [2019]

We obtained similar improvements on several other problems and flow

models
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Figure: Joint work with Anthony Caterini, George Deligiannidis, Arnaud Doucet,
and Dino Sejdinovic
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