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Overview
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Motivation

It is often important to parameterise an expressive families of densities

Key tasks:

Variational inference: find argminϕ KL(qϕ ∥ p(· | X ))

Density estimation: determine pdata from X1, . . . ,Xn
i.i.d.∼ pdata

Normalising flows use neural networks to parameterise families of
diffeomorphisms, which induce densities via the change-of-variables formula
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Key idea

Parameterise a family of diffeomorphisms fψ and choose a fixed noise
distribution pZ

Define model pψ to be the W marginal of the following generative process:

Z ∼ pZ W := fψ(Z )

This gives a procedure for sampling from pψ

Can also compute densities via change-of-variables:

pψ(w) = pZ (f
−1
ψ (w))

∣∣∣detDf −1
ψ (w)

∣∣∣

where Df −1
ψ (w) denotes the Jacobian of f −1

ψ evaluated at w .
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Variational inference
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Overview

Assume a Bayesian model pX ,Y with prior pY and likelihood pX |Y , e.g.

pX ,Y (x , y) = pY (y)
n∏

i=1

pX |Y (xi | y)

Observe data X = (X1, . . . ,Xn), and seek posterior pY |X (· | X )

Variational inference: (non-amortised)

1 Posit a family of approximate posteriors qϕ on Y -space

2 Approximate the true posterior via

argminϕ KL(qϕ ∥ pY |X (· | X ))
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Mean-field approximation

For high-quality inference, expressiveness of qϕ is key; otherwise
minϕ KL(qϕ ∥ pY |X (· | X )) will be large (for complex posteriors)

One approach is mean-field:

qϕ(y) =

dim(Y )∏

i=1

qi (yi ;ϕ),

where e.g. ϕ = (µ, σ) and qi (yi ;ϕ) = Normal(yi ;µi , σi )

Can rewrite as
qϕ(y) = Normal(y ;µ, σ I ),

so unimodal and axis-aligned, i.e. fairly limited expressiveness
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Normalising flows for variational inference

Key idea of Rezende and Mohamed [2015]: use normalising flows to
parameterise a more expressive approximate posterior qϕ

In particular, take qϕ to be distribution of Y , where

Z ∼ pZ Y := fϕ(Z )

with fϕ a diffeomorphismVariational Inference with Normalizing Flows

and involve matrix inverses that can be numerically unsta-
ble. We therefore require normalizing flows that allow for
low-cost computation of the determinant, or where the Ja-
cobian is not needed at all.

4.1. Invertible Linear-time Transformations

We consider a family of transformations of the form:

f(z) = z + uh(w>z + b), (10)

where � = {w 2 IRD,u 2 IRD, b 2 IR} are free pa-
rameters and h(·) is a smooth element-wise non-linearity,
with derivative h0(·). For this mapping we can compute
the logdet-Jacobian term in O(D) time (using the matrix
determinant lemma):

 (z) = h0(w>z + b)w (11)���det @f
@z

��� = | det(I + u (z)>)| = |1 + u> (z)|. (12)

From (7) we conclude that the density qK(z) obtained by
transforming an arbitrary initial density q0(z) through the
sequence of maps fk of the form (10) is implicitly given
by:

zK = fK � fK�1 � . . . � f1(z)

ln qK(zK) = ln q0(z)�
KX

k=1

ln |1 + u>
k  k(zk�1)|. (13)

The flow defined by the transformation (13) modifies the
initial density q0 by applying a series of contractions and
expansions in the direction perpendicular to the hyperplane
w>z+b = 0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transforma-
tions that modify an initial density q0 around a reference
point z0. The transformation family is:

f(z) = z + �h(↵, r)(z� z0), (14)����det
@f

@z

���� = [1 + �h(↵, r)]
d�1

[1 + �h(↵, r) + �h0(↵, r)r)] ,

where r = |z � z0|, h(↵, r) = 1/(↵ + r), and the param-
eters of the map are � = {z0 2 IRD,↵ 2 IR+,� 2 IR}.
This family also allows for linear-time computation of the
determinant. It applies radial contractions and expansions
around the reference point and are thus referred to as radial
flows. We show the effect of expansions and contractions
on a uniform and Gaussian initial density using the flows
(10) and (14) in figure 1. This visualization shows that we
can transform a spherical Gaussian distribution into a bi-
modal distribution by applying two successive transforma-
tions.

Not all functions of the form (10) or (14) will be invert-
ible. We discuss the conditions for invertibility and how to
satisfy them in a numerically stable way in the appendix.
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Figure 1. Effect of normalizing flow on two distributions.

Inference network Generative model

Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-
sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.

4.2. Flow-Based Free Energy Bound

If we parameterize the approximate posterior distribution
with a flow of length K, q�(z|x) := qK(zK), the free en-
ergy (3) can be written as an expectation over the initial
distribution q0(z):

F(x) = Eq�(z|x)[log q�(z|x)� log p(x, z)]

= Eq0(z0) [ln qK(zK)� log p(x, zK)]

= Eq0(z0) [ln q0(z0)]� Eq0(z0) [log p(x, zK)]

� Eq0(z0)

"
KX

k=1

ln |1 + u>
k  k(zk�1)|

#
. (15)

Normalizing flows and this free energy bound can be used
with any variational optimization scheme, including gener-
alized variational EM. For amortized variational inference,
we construct an inference model using a deep neural net-
work to build a mapping from the observations x to the
parameters of the initial density q0 = N (µ,�) (µ 2 IRD

and � 2 IRD) as well as the parameters of the flow �.

4.3. Algorithm Summary and Complexity

The resulting algorithm is a simple modification of the
amortized inference algorithm for DLGMs described by
(Kingma & Welling, 2014; Rezende et al., 2014), which
we summarize in algorithm 1. By using an inference net-
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The evidence lower bound (ELBO)

Can compute

KL(qϕ ∥ pY |X (· | X )) = −
∫

qϕ(y) log
pY |X (y | X )

qϕ(y)
dy

= −
∫

qϕ(y)

(
log

pX ,Y (X , y)

qϕ(y)
− log pX (X )

)
dy

= −
∫

qϕ(y) log
pX ,Y (X , y)

qϕ(y)
dy + log pX (X ),

so that

argminϕ KL(qϕ ∥ pY |X (· | X )) = argmaxϕ

∫
qϕ(y) log

pX ,Y (X , y)

qϕ(y)
dy

︸ ︷︷ ︸
=:ELBO(ϕ)
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Optimising the ELBO

A general strategy for optimising the ELBO is stochastic gradient ascent

For normalising flows, since qϕ is the pushforward of pZ by fϕ,

ELBO(ϕ) :=

∫
qϕ(y) log

pX ,Y (X , y)

qϕ(y)
dy

=

∫
pZ (z) log

pX ,Y (X , fϕ(z))

qϕ(fϕ(z))
dz

By differentiating under the integral sign,

∇ϕ ELBO(ϕ) =

∫
pZ (z)∇ϕ log

pX ,Y (X , fϕ(z))

qϕ(fϕ(z))
dz ,

so that if Z ∼ pZ , then ∇ϕ log
pX ,Y (X ,fϕ(Z))

qϕ(fϕ(Z)) is an unbiased estimate of

∇ϕ ELBO(ϕ) suitable for optimisation
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Summary

When using normalising flows for variational inference:

1 Choose pZ and parameterise fϕ

2 Sample Z ∼ pZ and compute ∇ϕ log
pX ,Y (X ,fϕ(Z))

qϕ(fϕ(Z))

3 Update ϕ via stochastic gradient ascent

In practice:

Use neural network for fϕ (can for pZ also if reparameterisable)

Obtain ϕ gradient via autodiff

Must be able to sample efficiently from qϕ (i.e. compute fϕ(z))

Only need to be able to compute efficiently

qϕ(fϕ(Z )) = pZ (f
−1
ϕ (fϕ(Z )))

∣∣∣detDf −1
ϕ (fϕ(Z ))

∣∣∣ = pZ (Z ) |detDfϕ(Z )|−1

(or an unbiased estimate of its log), i.e. not f −1
ϕ (y) given only y

Can amortise this procedure
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Density estimation
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Overview

Aim: determine pdata from samples X1, . . . ,Xn
i.i.d.∼ pdata

Applications:

Out-of-distribution detection

Synthetic data generation
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Illustrative approach

Kernel density estimation:
approximate density of pdata by

p(x) :=
1

n

n∑

i=1

k(x − Xi ),

where k is e.g. a scaled Gaussian

Source: blogs.sas.com
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Motivation

Curse of dimensionality ⇒ different strategies needed in high dimensions

Neural networks have had great success with high-dimensional data e.g. in
classification problems

How can we leverage this expressiveness for density estimation?
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High-level strategy

Alternatively, consider projecting pdata onto a model family, i.e. estimate is

argminθ∈Θ KL(pdata ∥ pθ)

where pθ is a parametrised density

As with variational inference, expressiveness of pθ is clearly important
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Normalising flows for density estimation

A popular idea is to use normalising flows to define pθ, i.e. pθ is the X
marginal of the following generative process:

Z ∼ pZ X := fθ(Z ),

where fθ is a parameterised diffeomorphism

This gives a procedure for sampling from pθ

Can also compute densities via change-of-variables:

pθ(x) = pZ (f
−1
θ (x))

∣∣detDf −1
θ (x)

∣∣

where Df −1
θ (x) denotes the Jacobian of f −1

θ evaluated at x

A nice feature is that this is often exactly tractable by construction
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Gradient estimation

By differentiating under the integral sign

∇θ KL(pdata ∥ pθ) = −∇θ

∫
pdata(x) log

pθ(x)

pdata(x)
dx

= −
∫

pdata(x)∇θ log pθ(x) dx ,

so if X ∼ pdata, then −∇θ log pθ(X ) is an unbiased gradient estimate

This allows finding argminθ KL(pdata ∥ pθ) by stochastic gradient descent
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Summary

When using normalising flows for density estimation:

1 Choose pZ and parameterise fθ
2 Obtain X ∼ pdata and compute −∇θ log pθ(X )

3 Update θ via stochastic gradient descent

In practice:

Use neural network for fθ

Obtain θ gradient via autodiff

Must be able to compute efficiently

pθ(x) = pZ (f
−1
θ (x))

∣∣detDf −1
θ (x)

∣∣

(or an unbiased estimate of ∇θ log pθ(x))

Don’t need to be able to sample from pθ
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Some flow architectures
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Key considerations

Want to parameterise a family of diffeomorphisms fψ

Key requirements:

fψ must be invertible (in practice this may be implicit)

Tractable log Jacobian (or tractable unbiased estimate)

Can compose flows to obtain greater complexity
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RealNVP

For w ∈ RD and 1 ≤ d < D, Dinh et al. [2017] defines

fψ(w) =

[
w1:d

exp(s(w1:d ;ψ))⊙ wd+1:D + t(w1:d ;ψ)

]

where s, t : Rd → RD−d are unconstrained neural networks

Clear that this is invertible

Jacobian matrix is lower-triangular, so determinant is tractable
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Inverse Autoregressive Flow / Masked Autoregressive Flow

For w ∈ RD , define

fi (w ;ψ) = exp(si (w1:i−1;ψ))⊙ wi + ti (w1:i−1;ψ),

where si , ti : Ri−1 → R are unconstrained neural networks, and set

fψ(w) :=



f1(w ;ψ)

...
fD(w ;ψ)




Again invertible and triangular Jacobian matrix

For efficiency (in one direction), MADE [Germain et al., 2015] provides a
way to parameterise an autoregressive neural network

Used by Kingma et al. [2016] (for VI) and Papamakarios et al. [2017] (for
density estimation)
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Residual Flows

Triangular Jacobians seem to reduce expressiveness

Alternative strategy [Behrmann et al., 2019, Chen et al., 2020]: if
gψ : RD → RD has Lip gψ < 1, then we get a diffeomorphism

fψ(w) := w + gψ(w)

Can ensure a neural network gψ is Lipschitz via spectral normalisation

Can estimate Jacobians unbiasedly by expanding as a matrix power series,
and using debiasing techniques plus the Skilling-Hutchinson trace estimator

Can be inverted numerically by Banach Fixed Point theorem
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Limitations of normalising flows
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Intuition

Diffeomorphisms preserve topological properties of their input space, e.g.

Number of connected components

Number of “holes”

How the space is “knotted”

Intuitively suggests that if X = f (Z ) then the supports of X and Z will
share the same topological properties
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Precise result

Theorem (Cornish et al. [2020])

If supp pZ is not homeomorphic to supp pdata, then a sequence of
diffeomorphisms fn can yield fn(Z ) → pdata in distribution only if

max{Lip fn, Lip f −1
n } → ∞

Convergence in distribution straightforwardly implies a version in terms of
being “approximately not homeomorphic”

General consequence: numerical noninvertibility (observed by Behrmann
et al. [2020])
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Consequences for Residual Flows

The following densities were learned using a Gaussian prior with a 10-layer
Residual Flow [Behrmann et al., 2019, Chen et al., 2020]

Figure: Darker regions indicate lower density. Data shown in black.
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Continuously-Indexed Normalizing Flows
(for density estimation)
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Continuously-Indexed Flow Layer

To gain expressiveness over baseline flows, continuously-indexed flows
(CIFs) now model the data as the X -marginal of

Z ∼ pZ , U | Z ∼ pU|Z (· | Z ), X := F (Z ;U)

where

U is a continuous index variable

pU|Z is a (parametrized) conditional distribution

F (·; u) is a diffeomorphism for every u

Any existing normalizing flow f can be used to construct F , e.g. via

F (z ; u) := f
(
es(u) ⊙ z + t(u)

)

for neural networks s, t outputting values in Z -space
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Multi-Layer CIFs

An L-layer CIF is obtained by stacking the single-layer model:

Z0 ∼ pZ0 ,

U1 ∼ pU1|Z0
(· | Z0), Z1 := F1(Z0;U1),

· · ·
UL ∼ PUL|ZL−1

(· | ZL−1), X := FL(ZL−1;UL)

����−1�1

�1 ��−1

...
�0 �

Figure: Graphical multi-layer CIF generative model
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Training and inference

The marginal pX is intractable, but the joint pX ,U1:L
has a closed-form, e.g.

for a single layer

pX ,U(x , u) = pZ (F
−1(x ; u))pU|Z (u | F−1(x ; u))| detDF−1(x ; u)|

Given an inference model qU1:L|X , we can use the ELBO for training:

L(x) := Eu1:L∼qU1:L|X (·|x)

[
log

pX ,U1:L
(x , u1:L)

qU1:L|X (u1:L | x)

]
≤ log pX (x)

At test time, we can estimate log pX (x) to arbitrary precision using an
m-sample IWAE estimate with m ≫ 1
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Inference model

To obtain an efficient inference model qU1:L|X , we exploit the conditional
independence structure of pU1:L|X from the forward model:

ZL := X ,

UL ∼ qUL|ZL
(· | ZL), ZL−1 := F−1

L (ZL;UL),

· · ·
U1 ∼ qU1|Z1

(· | Z1), Z0 := F−1
1 (Z1;U1)

In other words,

qU1:L|X (u1:L | x) :=
L∏

ℓ=1

qUℓ|Zℓ
(uℓ | zℓ)

This induces a natural weight-sharing scheme between the forward and
inverse models, since the same Fℓ are used in both cases
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Benefits over Standard Flows

Intuitively, the additional flexibility afforded by pU|Z allows a CIF to “clean
up” mass that would be misplaced by a single bijection

Proposition: Under mild conditions on the target and F , there exists pU|Z
such that the model pX has the same support as the target p⋆X

Proposition: If F (z ; ·) is surjective for each z , there exists pU|Z such that
pX matches p⋆X exactly
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Comparison with Related Models

CIFs may be understood as a hybrid between standard normalizing flow
and VAE density models:

X

Z

U

NF

X

U

Z

VAE

X

U

Z

CIF

In all cases, X = F (Z ;U) for some family of bijections F
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2D ResFlow Experiments

Figure: 10-layer ResFlow (top) and Continuously-Indexed ResFlow (bottom)
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2D Masked Autoregressive Flow (MAF) Experiments

Figure: Density models learned by a 20-layer MAF (above) and a 5-layer
CIF-MAF (below) for 2-D target distributions. The far right column uses a
higher-capacity model for each method.
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High-Dimensional ResFlow Experiments

Table: Test set bits per dimension. Lower is better.

MNIST CIFAR-10

ResFlow (small) 1.074 3.474
ResFlow (big) 1.018 3.422
CIF-ResFlow 0.922 3.334

NB: These ResFlows were smaller than those from Chen et al. [2019]

We obtained similar improvements on several other problems and flow
models
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Thank you!

Figure: Joint work with Anthony Caterini, George Deligiannidis, Arnaud Doucet,
and Dino Sejdinovic
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