Scalable Metropolis-Hastings for Exact Bayesian

Inference with Large Datasets

Rob Cornish  Paul Vanetti
Alexandre Bouchard-Coté  George Deligiannidis ~ Arnaud Doucet

July 19, 2020

Cornish et al. Scalable Metropolis—Hastings July 19, 2020 1/24



Bayesian inference via MCMC is expensive for large datasets
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Consider a posterior over parameters 6 given n data points y;:

7T((9) (0|)/1n OCP Hp }/1‘9
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Problem

Consider a posterior over parameters 6 given n data points y;:

7(0) = p(ly1.n) o< p(0 prlw

Metropolis—Hastings

Given a proposal g and current state 6:
@ Propose 8/ ~ q(6, )
@ Accept 0" with probability

aMH(O,H’) =1A
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Problem

Consider a posterior over parameters 6 given n data points y;:

7"-(0) 9|)/1n OCP Hp }/1‘9

Metropolis—Hastings

Given a proposal g and current state 6:
@ Propose 8/ ~ q(6, )
@ Accept 0" with probability

aMH(G,H’) =1A

= O(n) computation per step to compute an(6,6")
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Our approach

e Want a method with cost o(n) per step — subsampling
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Our approach

e Want a method with cost o(n) per step — subsampling

@ Want our method not to reduce accuracy — exactness
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Our approach

@ Several existing exact
subsampling methods:
o Firefly
[Maclaurin and Adams, 2014]
e Delayed acceptance
[Banterle et al., 2015]
e Piecewise-deterministic
MCMC
[Bouchard-Cbté et al., 2018,
Bierkens et al., 2018]
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Our approach

@ Several existing exact
subsampling methods:

o Firefly
[Maclaurin and Adams, 2014]
e Delayed acceptance
[Banterle et al., 2015]
e Piecewise-deterministic
MCMC T T T T T T T T T T T T
64 128 256 512 1024 2048 4096 8192 32768 131072

[Bouchard-Cbté et al., 2018, n
Bierkens et al., 2018]
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Likelihoods per iteration

Figure 1. Average number of likelihood

@ Our method: an exact evaluations per iteration required by
subsampling scheme based on a  SMH for a 10-dimensional logistic
proxy target that requires on regression posterior as the number of
average 0(1) or O(1/ﬁ) data points n increases.

likelihood evaluations per step
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Three key ingredients

O A factorised MH acceptance probability
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Ingredient 1 - Factorised Metropolis—Hastings

@ Suppose we can factor the target like

w(0) o< [ mi(6)
i=1
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Ingredient 1 - Factorised Metropolis—Hastings

@ Suppose we can factor the target like

w(0) o< [ mi(6)
i=1

@ Obvious choice (with a flat prior) is 7;(0) = p(yi|6)

e Can show that (for a symmetric proposal)

armu(6,6') HaFMH,(9 0') = ﬁ 7;((?;/))

is also a valid acceptance probability for an MH-style algorithm
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Ingredient 1 - Factorised Metropolis—Hastings

@ Suppose we can factor the target like

w(0) o< [ mi(6)
i=1

@ Obvious choice (with a flat prior) is 7;(0) = p(yi|6)

e Can show that (for a symmetric proposal)

armu(6,6') HaFMH,(9 0') = ﬁ 7;((?;/))

is also a valid acceptance probability for an MH-style algorithm
@ Compare the MH acceptance probability as

A - 7ri(el)
aMH(H,Q)_ 1/\;[;]1: 7'(','(9)

Cornish et al. Scalable Metropolis—Hastings July 19, 2020 7/ 24



Ingredient 1 - Factorised Metropolis—Hastings

Explicitly, (assuming symmetric g) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

@ Propose 8/ ~ q(6,-)
@ Accept 0" with probability

apvmu(0,0") HaFMH,(9 ) =]t 77:((99/))
i=1 i=1 !
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Ingredient 1 - Factorised Metropolis—Hastings

Explicitly, (assuming symmetric g) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

@ Propose 8/ ~ q(6,-)
@ Accept 0" with probability

7r,-(9’)
mi(6)

OdFMH(H (9 HQFMH/(H 0/) H
i=1

@ Can implement acceptance step by sampling independent
B; ~ Bernoulli(apymu;(6,60')) and accepting if every B; =1
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Factorised Metropolis-Hastings (FMH)
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@ Accept 0" with probability

7r,-(9’)
mi(6)

OdFMH(H (9 HQFMH/(H 0/) H
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@ Can implement acceptance step by sampling independent
B; ~ Bernoulli(apymu;(6,60')) and accepting if every B; =1

@ Can stop as soon as some B; = 0: delayed acceptance
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Ingredient 1 - Factorised Metropolis—Hastings

Explicitly, (assuming symmetric g) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)
@ Propose 8/ ~ q(6,-)
@ Accept 0" with probability

7r,-(9’)

mi(6)

OdFMH(H (9 HQFMH/(H 0/) H
i=1

@ Can implement acceptance step by sampling independent
B; ~ Bernoulli(apymu;(6,60')) and accepting if every B; =1
@ Can stop as soon as some B; = 0: delayed acceptance

@ However, still must compute all n terms in order to accept
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Three key ingredients

@ Procedures for fast simulation of Bernoulli random variables
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Ingredient 2 - Fast Bernoulli simulation

@ How can we avoid simulating these n Bernoullis?
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Ingredient 2 - Fast Bernoulli simulation

@ How can we avoid simulating these n Bernoullis?
@ Assuming we have bounds

)\,'((9, 9,) Z — Iog OZFMH,-(Q, 0/) = )\,'(9, 0’)
we can use the following:

Poisson subsampling

@ C ~ Poisson(>.] ; Xi(0,0"))

@ Xi,...,Xc S Categorical ([Xi(0,6")/ 371 Xi(6, 0")]1<i<n)
@ B; ~ Bernoulli(Ax,(0,0')/Ax,(0,0)) for 1 < j < C
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Ingredient 2 - Fast Bernoulli simulation

@ How can we avoid simulating these n Bernoullis?
@ Assuming we have bounds

Ai(0,0") > —log apmm;i(0,0") =: Xi(0,0")

we can use the following:

Poisson subsampling

@ C ~ Poisson(}.7_, Xi(6,0"))
@ Xi,...,Xc S Categorical ([Xi(0,6")/ 371 Xi(6, 0")]1<i<n)
@ B; ~ Bernoulli(Ax,(0,0')/Ax,(0,0)) for 1 < j < C

= P(By=---=Bc=0)=armu(d,8), so can use this procedure to
perform the FMH accept/reject step
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Ingredient 2 - Fast Bernoulli simulation

@ How can we avoid simulating these n Bernoullis?
@ Assuming we have bounds

Ai(0,0") > —log apmm;i(0,0") =: Xi(0,0")

we can use the following:

Poisson subsampling

@ C ~ Poisson(}.7_, Xi(6,0"))
@ Xi,...,Xc S Categorical ([Xi(0,6")/ 371 Xi(6, 0")]1<i<n)
@ B; ~ Bernoulli(Ax,(0,0')/Ax,(0,0)) for 1 < j < C

= P(By=---=Bc=0)=armu(d,8), so can use this procedure to
perform the FMH accept/reject step

@ Intuition: sample a discrete Poisson point process on {1,...,n} with
intensity 7 — X;(6,0") by thinning one with intensity i — X;(6,6’)
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Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

@ C ~ Poisson(}.7_; Xi(6,6"))
@ Xi,...,Xc % Categorical ([N(0,0")/ Y7y Xi(0, 0 )l1<i<n)

Q@ B; ~ Bernoulli(\x,(0,0)/Ax,(0,0)) for 1 <j < C
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Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

@ C ~ Poisson(}.7_; Xi(6,6"))
@ Xi,...,Xc % Categorical ([N(0,0")/ Y7y Xi(0, 0 )l1<i<n)

Q@ B; ~ Bernoulli(\x,(0,0)/Ax,(0,0)) for 1 <j < C

When is this efficient? Suppose our bounds have the form:

Xi(0.0") = (0,6 )0; > —log apmu;(6,6') = Xi(6,0"). (*)
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Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

@ C ~ Poisson(}.7_; Xi(6,6"))
@ Xi,...,Xc % Categorical ([N(0,0")/ Y7y Xi(0, 0 )l1<i<n)

Q@ B; ~ Bernoulli(\x,(0,0)/Ax,(0,0)) for 1 <j < C

When is this efficient? Suppose our bounds have the form:
Xi(0,0") = (0,0")y; > —log apmm;(0,0') = Xi(6,0'). (*)
Then:

D X060 = ¢(0,0) v
i=1 i=1
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Ingredient 2 - Fast Bernoulli simulation
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© C ~ Poisson(}_7_; Xi(6,60')) = O(1) (after precomputing > 7, 1)
Q@ Xi,...,Xc id Categorical ([X,-(O, 0")/ >0 N, 0’)]1§,-§,,)

Q@ B; ~ Bernoulli(\x,(0,0)/Ax,(0,0)) for 1 <j < C
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Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

@ C ~ Poisson(3 7L Xi(6,0')) = O(1) (after precomputing 3 7 ; ;)

Q Xi,...,Xc 1r1\ch Categorical ([X,(Q, 9/)/ 27:1 X,’(G, 9,)]1§,'§,,) = O(C)
(via Walker's alias method [Walker, 1977], after ©(n) setup cost)
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Poisson subsampling

@ C ~ Poisson(3 7L Xi(6,0')) = O(1) (after precomputing 3 7 ; ;)

Q Xi,...,Xc 1r1\ch Categorical ([X,(Q, 9/)/ 27:1 X,’(G, 9,)]1§,'§,,) = O(C)
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Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

@ C ~ Poisson(3 7L Xi(6,0')) = O(1) (after precomputing 3 7 ; ;)

Q Xi,...,Xc 1r1\ch Categorical ([X,(Q, 9/)/ 27:1 X,’(G, 9,)]1§,'§,,) = O(C)
(via Walker's alias method [Walker, 1977], after ©(n) setup cost)

@ B, ~ Bernoulli(Ax,(0,0")/Ax.(6,6)) for 1 <j < C = O(C)

= Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:
Xi(0,0") = (0,0")y; > —log apmm;(0,0') = Xi(6,0'). (*)
Then:

(0.0 Ny Xi(6,6) v
2i(0,60') = (6,0 ; d = ="
,.Z_; ( ) SO( ) /Z_; v o 27:1 )\,-(9, ‘9’) Zi:l Vi

(*) holds for instance if log7; is Lipschitz (but will see better case later),
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Potential problems

Two problems now to overcome:
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= Must ensure C = o(n) if we are to achieve anything
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Potential problems

Two problems now to overcome:
@ Since C ~ Poisson(}_7_, Xi(6,0")), potentially C > n
= Must ensure C = o(n) if we are to achieve anything

@ Since each apyp;(0,0') < 1, can have apyy(6,6’) — 0 as n — oo
= Must ensure apyu (0, 6') is well behaved
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= Must ensure C = o(n) if we are to achieve anything

@ Since each apyp;(0,0') < 1, can have apyy(6,6’) — 0 as n — oo
= Must ensure apyu (0, 6') is well behaved

These problems are are related since
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Potential problems

Two problems now to overcome:
@ Since C ~ Poisson(}_7_, Xi(6,0")), potentially C > n
= Must ensure C = o(n) if we are to achieve anything
@ Since each apyp;(0,0') < 1, can have apyy(6,6’) — 0 as n — oo
= Must ensure apyu (0, 6') is well behaved

These problems are are related since

E[C|6,6 = _Xi(6,0) and aruu(8,6') > exp(— > _ Ni(6,0)).
i=1 i=1

Key question is how to choose bounds for which =7 ; X;(0,6’) is small.
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Three key ingredients

© Control performance using an approximate target ( “control
variates”)
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Ingredient 3 - control variates

@ Write the target as
m(0) = [T 7i(0) = [ [ exp(—Ui(9))
i=1 i=1

for potentials U; = — log 7;(0)
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Ingredient 3 - control variates

@ Write the target as
m(0) = [T 7i(0) = [ [ exp(—Ui(9))
i=1 i=1

for potentials U; = — log 7;(0)

@ Approximate N
Uk,i(9) = U;(0)

where Uk,,- is a k-th order Taylor expansion of U; around some fixed

~

6 (not depending on 1)
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Ingredient 3 - control variates

@ Also let

U(8) = Z Ur.i(0)
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Ingredient 3 - control variates

@ Also let
U(8) = Z Ur.i(0) = U(0) := Z Ui(0) = — log 7(0)

which is itself a Taylor expansion of U(6) around 6
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Ingredient 3 - control variates

@ Also let
U(8) = Z Ur.i(0) = U(0) := Z Ui(0) = — log 7(0)

which is itself a Taylor expansion of U(6) around 6

o Explicitly
Ui() = UB)+ VU@ (6—0)
Ga(6) = V(@) + VUG (0~ 8) + 50— ) VUG )
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Ingredient 3 - control variates

@ Also let
U(8) = Z Ur.i(0) = U(0) := Z Ui(0) = — log 7(0)

which is itself a Taylor expansion of U(6) around 6
o Explicitly

Gi(0) = U(0)+VU@)(0-0)

~ o~ ~ -~

Ga(6) = V(@) + VUG (0~ 8) + 50— ) VUG )

e In particular, gxp(—Ug(Q)) ~ m(0) is a Gaussian approximation to
the target at 6
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Ingredient 3 - control variates

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

asmuk(0,0") = (1 A exp(lzk(ﬁ’))) ﬁ 1A eXP(Uk,i(QI) - Ui(9"))

exp(—Uk(9)) ) 1 exp(Uk,i(0) — Ui(9))
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asmuk(0,0") = (1 A exp(lzk(ﬁ’))) ﬁ 1A eXP(Uk,i(QI) - Ui(9"))

exp(—Uk(9)) ) 1 exp(Uk,i(0) — Ui(9))

@ Corresponds to FMH using the factorisations

n

™ = eXp(—Uk) HeXP(Uk,i — U,')

Tn+1 i=1 i
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Ingredient 3 - control variates

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

asmuk(0,0") = (1 A exp(lzk(ﬁ’))) ﬁ 1A eXP(Uk,i(QI) - Ui(9"))

exp(—Uk(9)) ) 1 exp(Uk,i(0) — Ui(9))

@ Corresponds to FMH using the factorisations

n

™ = eXp(—Uk) HeXP(Uk,i — U,')

Tn+1 i=1 i

@ First factor can be simulated directly in O(1) time
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Ingredient 3 - control variates

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

e (0.0) exp(tzk(e'))) T4 ePUii() — Ui()
suikc«(6,6') (1/\exp(—Uk(9)) HMexp(Uk,i(e)—u,-(e))

@ Corresponds to FMH using the factorisations

n

™ = eXp(—Uk) HeXP(Uk,i — U,')

Tn+1 i=1 i

@ First factor can be simulated directly in O(1) time

@ Remaining factors can be simulated with Poisson subsampling
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Ingredient 3 - control variates

@ Recall we need upper bounds

— log apnimi (6, 0') < (0,6 )h; =: Xi(6,6")
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Ingredient 3 - control variates

@ Recall we need upper bounds
— log apnni(6,0') < (0,00 =: Xi(6,6)
@ Possible to show that, if we can find constants
Ugi1; > sup |9°Ui(0)] (*)
0cO
|Bl=k+1
then we can use

_ ~ -~ Uk 1,i
(0,0 i= (10— D87 + |0 Bl b
2 (0.6) v
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Ingredient 3 - control variates

@ Recall we need upper bounds
— log apnni(6,0') < (0,00 =: Xi(6,6)
@ Possible to show that, if we can find constants
Ugi1; > sup |9°Ui(0)] (*)
0cO
|Bl=k+1
then we can use

< n n Ui
i(0,0) = (|0 — 0]|< T +||0" — g))<FT) L
©(0,0") T
@ (*) constitutes the only quantity that must be specified by hand to
use our method on a given model
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Ingredient 3 - control variates

Heuristically, suppose
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o0~ (chain is at stationarity)
e ||0 — bnap| = O(1//n) (1/+/n concentration - key assumption)
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Ingredient 3 - control variates
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o |6 — uap| = O(1/\/7) (6 is not too far from mode)
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Ingredient 3 - control variates

Heuristically, suppose

o0~ (chain is at stationarity)
e ||0 — bnap| = O(1//n) (1/+/n concentration - key assumption)
e [0/ — 0] =0(1/y/n) (proposal is scaled like 1/4/n)
o |6 — uap| = O(1/\/7) (6 is not too far from mode)

then by the triangle inequality

" Uy, .
ZA (6.0 = (10 = 81 + 19" = B B~ gy = O 7%)
2 |

O(n—(k+1)/2) ———
O(n)
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Ingredient 3 - control variates

Heuristically, suppose

o0~ (chain is at stationarity)
e ||0 — bnap| = O(1//n) (1/+/n concentration - key assumption)
e [0/ — 0] =0(1/y/n) (proposal is scaled like 1/4/n)
o |6 — uap| = O(1/\/7) (6 is not too far from mode)

then by the triangle inequality

" Uy, .
ZA (6.0 = (10 = 81 + 19" = B B~ gy = O 7%)
2 |

O(n—(k+1)/2) ———
O(n)

In particular, Y7, Xi(0,0") is O(1) if k =1 and O(1/\/n) if k =2
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This directly yields an average cost per step

w001 =3 3000 = {000 7 4
i=1 — 2.
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This directly yields an average cost per step

w001 =3 3000 = {000 7 4
i=1 — 2.

Likewise, acceptance probability is stable since

asmuk(0,0') :

_ <1 . M(@D) | oD (#) — Ui(0)
exp(—Uk(0)) exp( Uk i(0) — Ui(9))

>exp(—O(1)) >exp(— X", Ai(6,0'))
(can show)
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This directly yields an average cost per step

w001 =3 3000 = {000 7 4
i=1 — 2.

Likewise, acceptance probability is stable since

e (0.0 — 12 (9/))) exp(Uri(#) = Ui(#)
surok(6: ) <1/\exp( G0 1L exp(Ur.i(0) — Ui(0))

>exp(—O(1)) >exp(— X", Ai(6,0'))
(can show)

Can do even better with a exp(—Uk)—reversible proposal (first term
vanishes).
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Application - logistic regression

@ We consider logistic regression with covariates x; € R and responses

yi € {Oa 1}
(%16,x) = Bernoulli(y|———— )
PLYilU, X = ernoutli| y; 1+exp(—9TXi)
= Ui(0) = —logp(yil0,x;) = log(1 +exp(6 x;)) — yi0 " x;
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Application - logistic regression

@ We consider logistic regression with covariates x; € R and responses

yi € {Oa 1}
(%16,x) = Bernoulli(y|———— )
plilv,xi) = ernoullily; 1+exp(—0Tx,~)
= Ui() = —logp(yilf,x) = log(1+exp(67x)) — yif ' x;
@ Admits upper bounds
71 2 7. 1 3
Vai=gmax bal™ Usi= 5oz max Il
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Application - logistic regression

Empirical result for d = 10
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Figure 2: Average number of likelihood evaluations per iteration required by SMH
for a 10-dimensional logistic regression posterior as the number of data points n
increases.
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Application - logistic regression

Empirical result for d = 10
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Figure 3: Effective sample size per second of computation for posterior mean of
first regression coefficient (higher is better)
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Thanks for listening

Find us later at poster #202.
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