Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets

Rob Cornish Paul Vanetti Alexandre Bouchard-Côté George Deligiannidis Arnaud Doucet

July 19, 2020

Bayesian inference via MCMC is $\ensuremath{\mathsf{expensive}}$ for large datasets

Consider a posterior over **parameters** θ given n **data points** y_i :

$$\pi(\theta) = p(\theta|y_{1:n}) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta).$$

Consider a posterior over parameters θ given n data points y_i :

$$\pi(\theta) = p(\theta|y_{1:n}) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta).$$

Metropolis-Hastings

Given a proposal q and current state θ :

- Propose $\theta' \sim q(\theta, \cdot)$
- 2 Accept θ' with probability

$$lpha_{ ext{MH}}(heta, heta') := 1 \wedge rac{q(heta', heta)\pi(heta')}{q(heta, heta')\pi(heta)} = 1 \wedge rac{q(heta', heta)p(heta')}{q(heta, heta')p(heta)} \prod_{i=1}^n rac{p(y_i| heta')}{p(y_i| heta)}$$

3 / 24

Consider a posterior over **parameters** θ given n **data points** y_i :

$$\pi(\theta) = p(\theta|y_{1:n}) \propto p(\theta) \prod_{i=1}^{n} p(y_i|\theta).$$

Metropolis-Hastings

Given a proposal q and current state θ :

- **1** Propose $\theta' \sim q(\theta, \cdot)$
- 2 Accept θ' with probability

$$lpha_{ ext{MH}}(heta, heta') := 1 \wedge rac{q(heta', heta)\pi(heta')}{q(heta, heta')\pi(heta)} = 1 \wedge rac{q(heta', heta)p(heta')}{q(heta, heta')p(heta)} \prod_{i=1}^n rac{p(y_i| heta')}{p(y_i| heta)}$$

 \Rightarrow O(n) computation per step to compute $\alpha_{\mathrm{MH}}(\theta, \theta')$

• Want a method with cost o(n) per step – subsampling

- Want a method with cost o(n) per step subsampling
- Want our method not to reduce accuracy exactness

- Several existing exact subsampling methods:
 - Firefly
 [Maclaurin and Adams, 2014]
 - Delayed acceptance [Banterle et al., 2015]
 - Piecewise-deterministic MCMC
 [Bouchard-Côté et al., 2018, Bierkens et al., 2018]

- Several existing exact subsampling methods:
 - Firefly [Maclaurin and Adams, 2014]
 - Delayed acceptance [Banterle et al., 2015]
 - Piecewise-deterministic MCMC
 [Bouchard-Côté et al., 2018, Bierkens et al., 2018]
- Our method: an exact subsampling scheme based on a proxy target that requires on average O(1) or $O(1/\sqrt{n})$ likelihood evaluations per step

Figure 1: Average number of likelihood evaluations per iteration required by SMH for a 10-dimensional logistic regression posterior as the number of data points *n* increases.

Three key ingredients

- A factorised MH acceptance probability
- Procedures for fast simulation of Bernoulli random variables
- 3 Control performance using an approximate target ("control variates")

Suppose we can factor the target like

$$\pi(\theta) \propto \prod_{i=1}^n \pi_i(\theta)$$

• Suppose we can factor the target like

$$\pi(\theta) \propto \prod_{i=1}^n \pi_i(\theta)$$

• Obvious choice (with a flat prior) is $\pi_i(\theta) = p(y_i|\theta)$

Suppose we can factor the target like

$$\pi(\theta) \propto \prod_{i=1}^n \pi_i(\theta)$$

- Obvious choice (with a flat prior) is $\pi_i(\theta) = p(y_i|\theta)$
- Can show that (for a symmetric proposal)

$$\alpha_{\mathrm{FMH}}(\theta, \theta') := \prod_{i=1}^{n} \alpha_{\mathrm{FMH}i}(\theta, \theta') := \prod_{i=1}^{n} 1 \wedge \frac{\pi_{i}(\theta')}{\pi_{i}(\theta)}$$

is also a valid acceptance probability for an MH-style algorithm

Suppose we can factor the target like

$$\pi(\theta) \propto \prod_{i=1}^n \pi_i(\theta)$$

- Obvious choice (with a flat prior) is $\pi_i(\theta) = p(y_i|\theta)$
- Can show that (for a symmetric proposal)

$$\alpha_{\mathrm{FMH}}(\theta, \theta') := \prod_{i=1}^{n} \alpha_{\mathrm{FMH}i}(\theta, \theta') := \prod_{i=1}^{n} 1 \wedge \frac{\pi_{i}(\theta')}{\pi_{i}(\theta)}$$

is also a valid acceptance probability for an MH-style algorithm

• Compare the MH acceptance probability as

$$lpha_{\mathrm{MH}}(heta, heta') = 1 \wedge \prod_{i=1}^n rac{\pi_i(heta')}{\pi_i(heta)}$$

4 ∰ ▶ 4 Ē ▶ 4 Ē ▶ B • 9 Q (°)

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

- Propose $\theta' \sim q(\theta,\cdot)$
- **2** Accept θ' with probability

$$\alpha_{\mathrm{FMH}}(\theta, \theta') := \prod_{i=1}^{n} \alpha_{\mathrm{FMH}i}(\theta, \theta') := \prod_{i=1}^{n} 1 \wedge \frac{\pi_i(\theta')}{\pi_i(\theta)}$$

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

- Propose $\theta' \sim q(\theta,\cdot)$
- 2 Accept θ' with probability

$$\alpha_{\mathrm{FMH}}(\theta,\theta') := \prod_{i=1}^n \alpha_{\mathrm{FMH}\,i}(\theta,\theta') := \prod_{i=1}^n 1 \wedge \frac{\pi_i(\theta')}{\pi_i(\theta)}$$

• Can implement acceptance step by sampling **independent** $B_i \sim \mathrm{Bernoulli}(\alpha_{\mathrm{FMH}i}(\theta, \theta'))$ and accepting if every $B_i = 1$

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

- Propose $\theta' \sim q(\theta,\cdot)$
- 2 Accept θ' with probability

$$\alpha_{\text{FMH}}(\theta, \theta') := \prod_{i=1}^{n} \alpha_{\text{FMH}i}(\theta, \theta') := \prod_{i=1}^{n} 1 \wedge \frac{\pi_i(\theta')}{\pi_i(\theta)}$$

- Can implement acceptance step by sampling **independent** $B_i \sim \mathrm{Bernoulli}(\alpha_{\mathrm{FMH}i}(\theta, \theta'))$ and accepting if every $B_i = 1$
- Can stop as soon as some $B_i = 0$: **delayed acceptance**

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

- **1** Propose $\theta' \sim q(\theta, \cdot)$
- **2** Accept θ' with probability

$$\alpha_{\mathrm{FMH}}(\theta,\theta') := \prod_{i=1}^n \alpha_{\mathrm{FMH}\,i}(\theta,\theta') := \prod_{i=1}^n 1 \wedge \frac{\pi_i(\theta')}{\pi_i(\theta)}$$

- Can implement acceptance step by sampling **independent** $B_i \sim \mathrm{Bernoulli}(\alpha_{\mathrm{FMH}i}(\theta, \theta'))$ and accepting if every $B_i = 1$
- Can stop as soon as some $B_i = 0$: **delayed acceptance**
- However, still must compute all n terms in order to accept

Three key ingredients

- A factorised MH acceptance probability
- Procedures for fast simulation of Bernoulli random variables
- Ontrol performance using an approximate target ("control variates")

• How can we avoid simulating these *n* Bernoullis?

- How can we avoid simulating these n Bernoullis?
- Assuming we have bounds

$$\overline{\lambda}_i(\theta, \theta') \ge -\log \alpha_{\text{FMH}}(\theta, \theta') =: \lambda_i(\theta, \theta')$$

we can use the following:

Poisson subsampling

- $\bullet \ \ C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta'))$
- **③** B_j ~ Bernoulli($\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta')$) for 1 ≤ j ≤ C

- How can we avoid simulating these n Bernoullis?
- Assuming we have bounds

$$\overline{\lambda}_i(\theta, \theta') \ge -\log \alpha_{\text{FMH}}(\theta, \theta') =: \lambda_i(\theta, \theta')$$

we can use the following:

Poisson subsampling

- $\bullet \ \ C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta'))$
- **③** B_j ~ Bernoulli($\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta')$) for 1 ≤ j ≤ C

 $\Rightarrow \mathbb{P}(B_1 = \cdots = B_C = 0) = \alpha_{\text{FMH}}(\theta, \theta')$, so can use this procedure to perform the FMH accept/reject step

- How can we avoid simulating these n Bernoullis?
- Assuming we have bounds

$$\overline{\lambda}_i(\theta, \theta') \ge -\log \alpha_{\text{FMH}}(\theta, \theta') =: \lambda_i(\theta, \theta')$$

we can use the following:

Poisson subsampling

- **1** $C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta'))$
- $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical}\left(\left[\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')\right]_{1 \leq i \leq n}\right)$
- **③** B_j ~ Bernoulli($\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta')$) for 1 ≤ j ≤ C
- $\Rightarrow \mathbb{P}(B_1 = \cdots = B_C = 0) = \alpha_{\text{FMH}}(\theta, \theta')$, so can use this procedure to perform the FMH accept/reject step
 - Intuition: sample a discrete Poisson point process on $\{1,\ldots,n\}$ with intensity $i\mapsto \lambda_i(\theta,\theta')$ by **thinning** one with intensity $i\mapsto \overline{\lambda_i}(\theta,\theta')$

Scalable Metropolis-Hastings

10 / 24

Poisson subsampling

- **1** $C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta'))$
- $2 X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical} \left([\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')]_{1 \leq i \leq n} \right)$
- $B_j \sim \text{Bernoulli}(\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta'))$ for $1 \leq j \leq C$

Poisson subsampling

- **1** $C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta'))$
- $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical} \left([\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')]_{1 \leq i \leq n} \right)$
- **③** B_j ~ Bernoulli($\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta')$) for 1 ≤ j ≤ C

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}_i}(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

Poisson subsampling

- C ~ Poisson $(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta'))$
- 2 $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical} \left([\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')]_{1 \leq i \leq n} \right)$
- **③** B_j ~ Bernoulli($\lambda_{X_i}(\theta, \theta')/\overline{\lambda}_{X_i}(\theta, \theta')$) for 1 ≤ j ≤ C

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}_i}(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

$$\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta') = \varphi(\theta, \theta') \sum_{i=1}^{n} \psi_{i}$$

Poisson subsampling

- $C \sim \text{Poisson}(\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')) \Rightarrow O(1)$ (after precomputing $\sum_{i=1}^{n} \psi_{i}$)
- $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical}\left(\left[\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')\right]_{1 \leq i \leq n}\right)$
- **③** $B_j \sim \text{Bernoulli}(\lambda_{X_i}(\theta, \theta')/\overline{\lambda}_{X_i}(\theta, \theta'))$ for 1 ≤ $j \leq C$

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}_i}(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

$$\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta') = \varphi(\theta, \theta') \sum_{i=1}^{n} \psi_{i}$$

Poisson subsampling

- $C \sim \text{Poisson}(\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')) \Rightarrow O(1)$ (after precomputing $\sum_{i=1}^{n} \psi_{i}$)
- $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical}\left(\left[\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')\right]_{1 \leq i \leq n}\right)$
- **③** B_j ~ Bernoulli($\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta')$) for 1 ≤ j ≤ C

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}_i}(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

$$\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta') = \varphi(\theta,\theta') \sum_{i=1}^n \psi_i \quad \text{and} \quad \frac{\overline{\lambda}_i(\theta,\theta')}{\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta')} = \frac{\psi_i}{\sum_{i=1}^n \psi_i}.$$

Poisson subsampling

- $C \sim \text{Poisson}(\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')) \Rightarrow O(1)$ (after precomputing $\sum_{i=1}^{n} \psi_{i}$)
- ② $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical}\left([\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')]_{1 \leq i \leq n}\right) \Rightarrow O(C)$ (via Walker's alias method [Walker, 1977], after $\Theta(n)$ setup cost)
- $B_j \sim \text{Bernoulli}(\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta'))$ for $1 \leq j \leq C$

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}_i}(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

$$\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta') = \varphi(\theta,\theta') \sum_{i=1}^n \psi_i \qquad \text{and} \qquad \frac{\overline{\lambda}_i(\theta,\theta')}{\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta')} = \frac{\psi_i}{\sum_{i=1}^n \psi_i}.$$

Poisson subsampling

- $C \sim \text{Poisson}(\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')) \Rightarrow O(1)$ (after precomputing $\sum_{i=1}^{n} \psi_{i}$)
- 2 $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical}\left([\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')]_{1 \leq i \leq n}\right) \Rightarrow O(C)$ (via Walker's alias method [Walker, 1977], after $\Theta(n)$ setup cost)
- **③** $B_j \sim \text{Bernoulli}(\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta'))$ for $1 \leq j \leq C \Rightarrow O(C)$

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}i}(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

$$\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta') = \varphi(\theta,\theta') \sum_{i=1}^n \psi_i \qquad \text{and} \qquad \frac{\overline{\lambda}_i(\theta,\theta')}{\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta')} = \frac{\psi_i}{\sum_{i=1}^n \psi_i}.$$

Poisson subsampling

- $C \sim \text{Poisson}(\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')) \Rightarrow O(1)$ (after precomputing $\sum_{i=1}^{n} \psi_{i}$)
- 2 $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical}\left([\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')]_{1 \leq i \leq n}\right) \Rightarrow O(C)$ (via Walker's alias method [Walker, 1977], after $\Theta(n)$ setup cost)
- **③** $B_j \sim \text{Bernoulli}(\lambda_{X_j}(\theta, \theta')/\overline{\lambda}_{X_j}(\theta, \theta'))$ for $1 \leq j \leq C \Rightarrow O(C)$
- \Rightarrow Overall cost of O(C)

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}_i}(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

Then:

$$\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta') = \varphi(\theta,\theta') \sum_{i=1}^n \psi_i \qquad \text{and} \qquad \frac{\overline{\lambda}_i(\theta,\theta')}{\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta')} = \frac{\psi_i}{\sum_{i=1}^n \psi_i}.$$

4□ > 4□ > 4 = > 4 = > = 99

Poisson subsampling

- C ~ Poisson $(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta')) \Rightarrow O(1)$ (after precomputing $\sum_{i=1}^n \psi_i$)
- 2 $X_1, \ldots, X_C \stackrel{\text{iid}}{\sim} \text{Categorical} \left(\left[\overline{\lambda}_i(\theta, \theta') / \sum_{i=1}^n \overline{\lambda}_i(\theta, \theta') \right]_{1 \le i \le n} \right) \Rightarrow O(C)$ (via Walker's alias method [Walker, 1977], after $\Theta(n)$ setup cost)
- **3** $B_i \sim \text{Bernoulli}(\lambda_{X_i}(\theta, \theta')/\overline{\lambda}_{X_i}(\theta, \theta'))$ for $1 \leq j \leq C \Rightarrow O(C)$
- \Rightarrow Overall cost of O(C)

When is this **efficient**? Suppose our bounds have the form:

$$\overline{\lambda}_i(\theta, \theta') = \varphi(\theta, \theta')\psi_i \ge -\log \alpha_{\text{FMH}}_i(\theta, \theta') = \lambda_i(\theta, \theta'). \tag{*}$$

Then:

$$\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta') = \varphi(\theta, \theta') \sum_{i=1}^{n} \psi_{i} \quad \text{and} \quad \frac{\overline{\lambda}_{i}(\theta, \theta')}{\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')} = \frac{\psi_{i}}{\sum_{i=1}^{n} \psi_{i}}.$$

(*) holds for instance if $\log \pi_i$ is Lipschitz (but will see better case later),

Cornish et al Scalable Metropolis-Hastings

Two problems now to overcome:

Two problems now to overcome:

- Since $C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta'))$, potentially C > n
 - \Rightarrow Must ensure C = o(n) if we are to achieve anything

Two problems now to overcome:

- **1** Since $C \sim \text{Poisson}(\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta'))$, potentially C > n
 - \Rightarrow Must ensure C = o(n) if we are to achieve anything
- ② Since each $\alpha_{\text{FMH}i}(\theta, \theta') \leq 1$, can have $\alpha_{\text{FMH}}(\theta, \theta') \to 0$ as $n \to \infty$
 - \Rightarrow Must ensure $\alpha_{\text{FMH}}(\theta, \theta')$ is well behaved

Two problems now to overcome:

- **1** Since $C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta'))$, potentially C > n
 - \Rightarrow Must ensure C = o(n) if we are to achieve anything
- ② Since each $\alpha_{\mathrm{FMH}i}(\theta,\theta') \leq 1$, can have $\alpha_{\mathrm{FMH}}(\theta,\theta') \to 0$ as $n \to \infty$
 - \Rightarrow Must ensure $\alpha_{\mathrm{FMH}}(\theta, \theta')$ is well behaved

These problems are are related since

$$\mathbb{E}[C|\theta,\theta'] = \sum_{i=1}^n \overline{\lambda}_i(\theta,\theta') \quad \text{and} \quad \alpha_{\text{FMH}}(\theta,\theta') \ge \exp(-\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta')).$$

Potential problems

Two problems now to overcome:

- **1** Since $C \sim \text{Poisson}(\sum_{i=1}^n \overline{\lambda}_i(\theta, \theta'))$, potentially C > n
 - \Rightarrow Must ensure C = o(n) if we are to achieve anything
- ② Since each $\alpha_{\mathrm{FMH}i}(\theta,\theta') \leq 1$, can have $\alpha_{\mathrm{FMH}}(\theta,\theta') \to 0$ as $n \to \infty$
 - \Rightarrow Must ensure $\alpha_{\text{FMH}}(\theta, \theta')$ is well behaved

These problems are are related since

$$\mathbb{E}[C|\theta,\theta'] = \sum_{i=1}^n \overline{\lambda}_i(\theta,\theta') \quad \text{and} \quad \alpha_{\text{FMH}}(\theta,\theta') \ge \exp(-\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta')).$$

Key question is how to choose bounds for which $\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')$ is small.

Three key ingredients

- A factorised MH acceptance probability
- Procedures for fast simulation of Bernoulli random variables
- Control performance using an approximate target ("control variates")

• Write the target as

$$\pi(\theta) = \prod_{i=1}^{n} \pi_i(\theta) = \prod_{i=1}^{n} \exp(-U_i(\theta))$$

for **potentials** $U_i = -\log \pi_i(\theta)$

• Write the target as

$$\pi(\theta) = \prod_{i=1}^{n} \pi_i(\theta) = \prod_{i=1}^{n} \exp(-U_i(\theta))$$

for **potentials** $U_i = -\log \pi_i(\theta)$

Approximate

$$\widehat{U}_{k,i}(\theta) \approx U_i(\theta)$$

where $\widehat{U}_{k,i}$ is a k-th order Taylor expansion of U_i around some fixed $\widehat{\theta}$ (not depending on i)

Also let

$$\widehat{U}_k(\theta) := \sum_{i=1}^n \widehat{U}_{k,i}(\theta)$$

Also let

$$\widehat{U}_k(heta) := \sum_{i=1}^n \widehat{U}_{k,i}(heta) pprox U(heta) := \sum_{i=1}^n U_i(heta) = -\log \pi(heta)$$

which is itself a Taylor expansion of $U(\theta)$ around $\widehat{\theta}$

Also let

$$\widehat{U}_k(\theta) := \sum_{i=1}^n \widehat{U}_{k,i}(\theta) \approx U(\theta) := \sum_{i=1}^n U_i(\theta) = -\log \pi(\theta)$$

which is itself a Taylor expansion of $U(\theta)$ around $\widehat{\theta}$

Explicitly

$$\widehat{U}_{1}(\theta) = U(\widehat{\theta}) + \nabla U(\widehat{\theta})^{\top} (\theta - \widehat{\theta})
\widehat{U}_{2}(\theta) = U(\widehat{\theta}) + \nabla U(\widehat{\theta})^{\top} (\theta - \widehat{\theta}) + \frac{1}{2} (\theta - \widehat{\theta})^{\top} \nabla^{2} U(\widehat{\theta}) (\theta - \widehat{\theta})$$

Also let

$$\widehat{U}_k(\theta) := \sum_{i=1}^n \widehat{U}_{k,i}(\theta) \approx U(\theta) := \sum_{i=1}^n U_i(\theta) = -\log \pi(\theta)$$

which is itself a Taylor expansion of $U(\theta)$ around $\widehat{\theta}$

Explicitly

$$\widehat{U}_{1}(\theta) = U(\widehat{\theta}) + \nabla U(\widehat{\theta})^{\top} (\theta - \widehat{\theta})
\widehat{U}_{2}(\theta) = U(\widehat{\theta}) + \nabla U(\widehat{\theta})^{\top} (\theta - \widehat{\theta}) + \frac{1}{2} (\theta - \widehat{\theta})^{\top} \nabla^{2} U(\widehat{\theta}) (\theta - \widehat{\theta})$$

• In particular, $\exp(-\widehat{U}_2(\theta)) \approx \pi(\theta)$ is a Gaussian approximation to the target at $\widehat{\theta}$

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

$$\alpha_{\text{SMH-}k}(\theta, \theta') := \left(1 \wedge \frac{\exp(-\widehat{U}_k(\theta'))}{\exp(-\widehat{U}_k(\theta))}\right) \prod_{i=1}^n 1 \wedge \frac{\exp(\widehat{U}_{k,i}(\theta') - U_i(\theta'))}{\exp(\widehat{U}_{k,i}(\theta) - U_i(\theta))}.$$

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

$$\alpha_{\text{SMH-}k}(\theta,\theta') := \left(1 \wedge \frac{\exp(-\widehat{U}_k(\theta'))}{\exp(-\widehat{U}_k(\theta))}\right) \prod_{i=1}^n 1 \wedge \frac{\exp(\widehat{U}_{k,i}(\theta') - U_i(\theta'))}{\exp(\widehat{U}_{k,i}(\theta) - U_i(\theta))}.$$

Corresponds to FMH using the factorisations

$$\pi = \underbrace{\exp(-\widehat{U}_k)}_{\pi_{n+1}} \prod_{i=1}^n \underbrace{\exp(\widehat{U}_{k,i} - U_i)}_{\pi_i}$$

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

$$\alpha_{\mathrm{SMH-}k}(\theta,\theta') := \left(1 \wedge \frac{\exp(-\widehat{U}_k(\theta'))}{\exp(-\widehat{U}_k(\theta))}\right) \prod_{i=1}^n 1 \wedge \frac{\exp(\widehat{U}_{k,i}(\theta') - U_i(\theta'))}{\exp(\widehat{U}_{k,i}(\theta) - U_i(\theta))}.$$

Corresponds to FMH using the factorisations

$$\pi = \underbrace{\exp(-\widehat{U}_k)}_{\pi_{n+1}} \prod_{i=1}^n \underbrace{\exp(\widehat{U}_{k,i} - U_i)}_{\pi_i}$$

• First factor can be simulated directly in O(1) time

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

$$\alpha_{\text{SMH-}k}(\theta, \theta') := \left(1 \wedge \frac{\exp(-\widehat{U}_k(\theta'))}{\exp(-\widehat{U}_k(\theta))}\right) \prod_{i=1}^n 1 \wedge \frac{\exp(\widehat{U}_{k,i}(\theta') - U_i(\theta'))}{\exp(\widehat{U}_{k,i}(\theta) - U_i(\theta))}.$$

Corresponds to FMH using the factorisations

$$\pi = \underbrace{\exp(-\widehat{U}_k)}_{\pi_{n+1}} \prod_{i=1}^{n} \underbrace{\exp(\widehat{U}_{k,i} - U_i)}_{\pi_i}$$

- First factor can be simulated directly in O(1) time
- Remaining factors can be simulated with Poisson subsampling

Recall we need upper bounds

$$-\log \alpha_{\mathrm{FMH}_i}(\theta, \theta') \leq \varphi(\theta, \theta')\psi_i =: \overline{\lambda}_i(\theta, \theta')$$

Recall we need upper bounds

$$-\log \alpha_{\mathrm{FMH}\,i}(\theta,\theta') \leq \varphi(\theta,\theta')\psi_i =: \overline{\lambda}_i(\theta,\theta')$$

Possible to show that, if we can find constants

$$\overline{U}_{k+1,i} \ge \sup_{\substack{\theta \in \Theta \\ |\beta| = k+1}} |\partial^{\beta} U_i(\theta)| \tag{*}$$

then we can use

$$\overline{\lambda}_{i}(\theta, \theta') := \underbrace{(\|\theta - \widehat{\theta}\|_{1}^{k+1} + \|\theta' - \widehat{\theta}\|_{1}^{k+1})}_{\varphi(\theta, \theta')} \underbrace{\frac{\overline{U}_{k+1, i}}{(k+1)!}}_{\psi_{i}}$$

Recall we need upper bounds

$$-\log \alpha_{\mathrm{FMH}_i}(\theta, \theta') \leq \varphi(\theta, \theta')\psi_i =: \overline{\lambda}_i(\theta, \theta')$$

Possible to show that, if we can find constants

$$\overline{U}_{k+1,i} \ge \sup_{\substack{\theta \in \Theta \\ |\beta| = k+1}} |\partial^{\beta} U_i(\theta)| \tag{*}$$

then we can use

$$\overline{\lambda}_{i}(\theta, \theta') := \underbrace{(\|\theta - \widehat{\theta}\|_{1}^{k+1} + \|\theta' - \widehat{\theta}\|_{1}^{k+1})}_{\varphi(\theta, \theta')} \underbrace{\frac{\overline{U}_{k+1, i}}{(k+1)!}}_{\psi_{i}}$$

• (*) constitutes the **only quantity** that must be specified by hand to use our method on a given model

Heuristically, suppose

Heuristically, suppose

• $\theta \sim \pi$

(chain is at stationarity)

Heuristically, suppose

- ullet $\| heta heta_{\mathrm{MAP}}\| = O(1/\sqrt{n})$ $(1/\sqrt{n} \ \mathsf{concentration} \ \mathsf{-} \ \mathsf{key} \ \mathsf{assumption})$

Heuristically, suppose

- $\theta \sim \pi$
- $\bullet \|\theta \theta_{\text{MAP}}\| = O(1/\sqrt{n})$
- $\bullet \|\theta' \theta\| = O(1/\sqrt{n})$

(chain is at stationarity)

 $(1/\sqrt{n} \text{ concentration - key assumption})$ (proposal is scaled like $1/\sqrt{n}$)

Heuristically, suppose

•
$$\theta \sim \pi$$

•
$$\|\theta - \theta_{\text{MAP}}\| = O(1/\sqrt{n})$$

$$\bullet \|\theta' - \theta\| = O(1/\sqrt{n})$$

•
$$\|\widehat{\theta} - \theta_{\text{MAP}}\| = O(1/\sqrt{n})$$

(chain is at stationarity)

$$(1/\sqrt{n} \text{ concentration - key assumption})$$

(proposal is scaled like $1/\sqrt{n}$)

$$(\widehat{\theta} \text{ is not too far from mode})$$

Heuristically, suppose

$$m{ heta} \sim \pi$$
 (chain is at stationarity)

•
$$\| heta - heta_{\mathrm{MAP}} \| = O(1/\sqrt{n})$$
 $(1/\sqrt{n} \ \mathsf{concentration} \ \mathsf{-key} \ \mathsf{assumption})$

$$ullet \| heta' - heta\| = O(1/\sqrt{n})$$
 (proposal is scaled like $1/\sqrt{n}$)

$$ullet \|\widehat{ heta} - heta_{\mathrm{MAP}}\| = O(1/\sqrt{n})$$
 ($\widehat{ heta}$ is not too far from mode)

then by the triangle inequality

$$\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta') = \underbrace{(\|\theta - \widehat{\theta}\|_{1}^{k+1} + \|\theta' - \widehat{\theta}\|_{1}^{k+1})}_{O(n^{-(k+1)/2})} \underbrace{\sum_{i=1}^{n} \overline{U}_{k+1,i}}_{O(n)} = O(n^{(1-k)/2})$$

Heuristically, suppose

$$m{ heta} \sim \pi$$
 (chain is at stationarity)

$$ullet \ \| heta - heta_{\mathrm{MAP}}\| = O(1/\sqrt{n}) \qquad (1/\sqrt{n} \ \mathsf{concentration} \ \mathsf{-key} \ \mathsf{assumption})$$

$$ullet \| heta' - heta\| = O(1/\sqrt{n})$$
 (proposal is scaled like $1/\sqrt{n}$)

$$ullet \|\widehat{ heta} - heta_{ ext{MAP}}\| = O(1/\sqrt{n})$$
 ($\widehat{ heta}$ is not too far from mode)

then by the triangle inequality

$$\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta') = \underbrace{\left(\|\theta - \widehat{\theta}\|_{1}^{k+1} + \|\theta' - \widehat{\theta}\|_{1}^{k+1}\right)}_{O(n^{-(k+1)/2})} \underbrace{\sum_{i=1}^{n} \frac{\overline{U}_{k+1, i}}{(k+1)!}}_{O(n)} = O(n^{(1-k)/2})$$

In particular, $\sum_{i=1}^{n} \overline{\lambda}_{i}(\theta, \theta')$ is O(1) if k=1 and $O(1/\sqrt{n})$ if k=2

4□ > 4□ > 4 = > 4 = > = 90

Summary

This directly yields an average cost per step

$$\mathbb{E}[C|\theta,\theta'] = \sum_{i=1}^{n} \overline{\lambda}_i(\theta,\theta') = \begin{cases} O(1), & k=1 \\ O(1/\sqrt{n}) & k=2. \end{cases}$$

Summary

This directly yields an average cost per step

$$\mathbb{E}[C|\theta,\theta'] = \sum_{i=1}^{n} \overline{\lambda}_i(\theta,\theta') = \begin{cases} O(1), & k=1\\ O(1/\sqrt{n}) & k=2. \end{cases}$$

Likewise, acceptance probability is stable since

$$\alpha_{\mathrm{SMH-}k}(\theta,\theta') := \underbrace{\left(1 \wedge \frac{\exp(-\widehat{U}_k(\theta'))}{\exp(-\widehat{U}_k(\theta))}\right)}_{\geq \exp(-O(1))} \underbrace{\prod_{i=1}^n 1 \wedge \frac{\exp(\widehat{U}_{k,i}(\theta') - U_i(\theta'))}{\exp(\widehat{U}_{k,i}(\theta) - U_i(\theta))}}_{\geq \exp(-\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta'))}.$$

Summary

This directly yields an average cost per step

$$\mathbb{E}[C|\theta,\theta'] = \sum_{i=1}^{n} \overline{\lambda}_i(\theta,\theta') = \begin{cases} O(1), & k=1 \\ O(1/\sqrt{n}) & k=2. \end{cases}$$

Likewise, acceptance probability is stable since

$$\alpha_{\mathrm{SMH-}k}(\theta,\theta') := \underbrace{\left(1 \land \frac{\exp(-\widehat{U}_k(\theta'))}{\exp(-\widehat{U}_k(\theta))}\right)}_{\geq \exp(-O(1))} \underbrace{\prod_{i=1}^n 1 \land \frac{\exp(\widehat{U}_{k,i}(\theta') - U_i(\theta'))}{\exp(\widehat{U}_{k,i}(\theta) - U_i(\theta))}}_{\geq \exp(-\sum_{i=1}^n \overline{\lambda}_i(\theta,\theta'))}.$$

Can do even better with a $\exp(-\widehat{U}_k)$ -reversible proposal (first term vanishes).

19 / 24

Cornish et al. Scalable Metropolis–Hastings July 19, 2020

• We consider logistic regression with covariates $x_i \in \mathbb{R}^d$ and responses $y_i \in \{0,1\}$

$$p(y_i|\theta, x_i) = \text{Bernoulli}(y_i|\frac{1}{1 + \exp(-\theta^\top x_i)})$$

$$\Rightarrow U_i(\theta) = -\log p(y_i|\theta, x_i) = \log(1 + \exp(\theta^\top x_i)) - y_i\theta^\top x_i$$

• We consider logistic regression with covariates $x_i \in \mathbb{R}^d$ and responses $y_i \in \{0, 1\}$

$$p(y_i|\theta, x_i) = \text{Bernoulli}(y_i|\frac{1}{1 + \exp(-\theta^\top x_i)})$$

$$\Rightarrow U_i(\theta) = -\log p(y_i|\theta, x_i) = \log(1 + \exp(\theta^\top x_i)) - y_i\theta^\top x_i$$

Admits upper bounds

$$\overline{U}_{2,i} = \frac{1}{4} \max_{1 \le j \le d} |x_{ij}|^2 \qquad \overline{U}_{3,i} = \frac{1}{6\sqrt{3}} \max_{1 \le j \le d} |x_{ij}|^3$$

Empirical result for d = 10

Figure 2: Average number of likelihood evaluations per iteration required by SMH for a 10-dimensional logistic regression posterior as the number of data points n increases.

Empirical result for d = 10

Figure 3: Effective sample size per second of computation for posterior mean of first regression coefficient (higher is better)

Thanks for listening

Find us later at poster #202.