
Scalable Metropolis-Hastings for Exact Bayesian
Inference with Large Datasets

Rob Cornish Paul Vanetti
Alexandre Bouchard-Côté George Deligiannidis Arnaud Doucet

July 19, 2020

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 1 / 24

Problem

Bayesian inference via MCMC is expensive for large datasets

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 2 / 24

Problem

Consider a posterior over parameters θ given n data points yi :

π(θ) = p(θ|y1:n) ∝ p(θ)
n∏

i=1

p(yi |θ).

Metropolis–Hastings

Given a proposal q and current state θ:

1 Propose θ′ ∼ q(θ, ·)
2 Accept θ′ with probability

αMH(θ, θ′) := 1 ∧ q(θ′, θ)π(θ′)

q(θ, θ′)π(θ)
= 1 ∧ q(θ′, θ)p(θ′)

q(θ, θ′)p(θ)

n∏
i=1

p(yi |θ′)
p(yi |θ)

⇒ O(n) computation per step to compute αMH(θ, θ′)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 3 / 24

Problem

Consider a posterior over parameters θ given n data points yi :

π(θ) = p(θ|y1:n) ∝ p(θ)
n∏

i=1

p(yi |θ).

Metropolis–Hastings

Given a proposal q and current state θ:

1 Propose θ′ ∼ q(θ, ·)
2 Accept θ′ with probability

αMH(θ, θ′) := 1 ∧ q(θ′, θ)π(θ′)

q(θ, θ′)π(θ)
= 1 ∧ q(θ′, θ)p(θ′)

q(θ, θ′)p(θ)

n∏
i=1

p(yi |θ′)
p(yi |θ)

⇒ O(n) computation per step to compute αMH(θ, θ′)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 3 / 24

Problem

Consider a posterior over parameters θ given n data points yi :

π(θ) = p(θ|y1:n) ∝ p(θ)
n∏

i=1

p(yi |θ).

Metropolis–Hastings

Given a proposal q and current state θ:

1 Propose θ′ ∼ q(θ, ·)
2 Accept θ′ with probability

αMH(θ, θ′) := 1 ∧ q(θ′, θ)π(θ′)

q(θ, θ′)π(θ)
= 1 ∧ q(θ′, θ)p(θ′)

q(θ, θ′)p(θ)

n∏
i=1

p(yi |θ′)
p(yi |θ)

⇒ O(n) computation per step to compute αMH(θ, θ′)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 3 / 24

Our approach

Want a method with cost o(n) per step – subsampling

Want our method not to reduce accuracy – exactness

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 4 / 24

Our approach

Want a method with cost o(n) per step – subsampling

Want our method not to reduce accuracy – exactness

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 4 / 24

Our approach

Several existing exact
subsampling methods:

Firefly
[Maclaurin and Adams, 2014]

Delayed acceptance
[Banterle et al., 2015]

Piecewise-deterministic
MCMC
[Bouchard-Côté et al., 2018,

Bierkens et al., 2018]

Our method: an exact
subsampling scheme based on a
proxy target that requires on
average O(1) or O(1/

√
n)

likelihood evaluations per step

64 128 256 512 1024 2048 4096 8192 32768 131072
n

101

102

103

104

105

Lik
el

ih
oo

ds
 p

er
 it

er
at

io
n

MH
SMH-1
SMH-2

Figure 1: Average number of likelihood
evaluations per iteration required by
SMH for a 10-dimensional logistic
regression posterior as the number of
data points n increases.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 5 / 24

Our approach

Several existing exact
subsampling methods:

Firefly
[Maclaurin and Adams, 2014]

Delayed acceptance
[Banterle et al., 2015]

Piecewise-deterministic
MCMC
[Bouchard-Côté et al., 2018,

Bierkens et al., 2018]

Our method: an exact
subsampling scheme based on a
proxy target that requires on
average O(1) or O(1/

√
n)

likelihood evaluations per step

64 128 256 512 1024 2048 4096 8192 32768 131072
n

101

102

103

104

105

Lik
el

ih
oo

ds
 p

er
 it

er
at

io
n

MH
SMH-1
SMH-2

Figure 1: Average number of likelihood
evaluations per iteration required by
SMH for a 10-dimensional logistic
regression posterior as the number of
data points n increases.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 5 / 24

Three key ingredients

1 A factorised MH acceptance probability

2 Procedures for fast simulation of Bernoulli random variables

3 Control performance using an approximate target (“control variates”)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 6 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Suppose we can factor the target like

π(θ) ∝
n∏

i=1

πi (θ)

Obvious choice (with a flat prior) is πi (θ) = p(yi |θ)

Can show that (for a symmetric proposal)

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

is also a valid acceptance probability for an MH-style algorithm

Compare the MH acceptance probability as

αMH(θ, θ′) = 1 ∧
n∏

i=1

πi (θ
′)

πi (θ)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 7 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Suppose we can factor the target like

π(θ) ∝
n∏

i=1

πi (θ)

Obvious choice (with a flat prior) is πi (θ) = p(yi |θ)

Can show that (for a symmetric proposal)

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

is also a valid acceptance probability for an MH-style algorithm

Compare the MH acceptance probability as

αMH(θ, θ′) = 1 ∧
n∏

i=1

πi (θ
′)

πi (θ)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 7 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Suppose we can factor the target like

π(θ) ∝
n∏

i=1

πi (θ)

Obvious choice (with a flat prior) is πi (θ) = p(yi |θ)

Can show that (for a symmetric proposal)

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

is also a valid acceptance probability for an MH-style algorithm

Compare the MH acceptance probability as

αMH(θ, θ′) = 1 ∧
n∏

i=1

πi (θ
′)

πi (θ)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 7 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Suppose we can factor the target like

π(θ) ∝
n∏

i=1

πi (θ)

Obvious choice (with a flat prior) is πi (θ) = p(yi |θ)

Can show that (for a symmetric proposal)

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

is also a valid acceptance probability for an MH-style algorithm

Compare the MH acceptance probability as

αMH(θ, θ′) = 1 ∧
n∏

i=1

πi (θ
′)

πi (θ)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 7 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

1 Propose θ′ ∼ q(θ, ·)
2 Accept θ′ with probability

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

Can implement acceptance step by sampling independent
Bi ∼ Bernoulli(αFMHi (θ, θ

′)) and accepting if every Bi = 1

Can stop as soon as some Bi = 0: delayed acceptance

However, still must compute all n terms in order to accept

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 8 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

1 Propose θ′ ∼ q(θ, ·)
2 Accept θ′ with probability

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

Can implement acceptance step by sampling independent
Bi ∼ Bernoulli(αFMHi (θ, θ

′)) and accepting if every Bi = 1

Can stop as soon as some Bi = 0: delayed acceptance

However, still must compute all n terms in order to accept

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 8 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

1 Propose θ′ ∼ q(θ, ·)
2 Accept θ′ with probability

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

Can implement acceptance step by sampling independent
Bi ∼ Bernoulli(αFMHi (θ, θ

′)) and accepting if every Bi = 1

Can stop as soon as some Bi = 0: delayed acceptance

However, still must compute all n terms in order to accept

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 8 / 24

Ingredient 1 - Factorised Metropolis–Hastings

Explicitly, (assuming symmetric q) FMH algorithm is:

Factorised Metropolis-Hastings (FMH)

1 Propose θ′ ∼ q(θ, ·)
2 Accept θ′ with probability

αFMH(θ, θ′) :=
n∏

i=1

αFMHi (θ, θ
′) :=

n∏
i=1

1 ∧ πi (θ
′)

πi (θ)

Can implement acceptance step by sampling independent
Bi ∼ Bernoulli(αFMHi (θ, θ

′)) and accepting if every Bi = 1

Can stop as soon as some Bi = 0: delayed acceptance

However, still must compute all n terms in order to accept

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 8 / 24

Three key ingredients

1 A factorised MH acceptance probability

2 Procedures for fast simulation of Bernoulli random variables

3 Control performance using an approximate target (“control variates”)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 9 / 24

Ingredient 2 - Fast Bernoulli simulation

How can we avoid simulating these n Bernoullis?

Assuming we have bounds

λi (θ, θ
′) ≥ − logαFMHi (θ, θ

′) =: λi (θ, θ
′)

we can use the following:

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′))

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
3 Bj ∼ Bernoulli(λXj

(θ, θ′)/λXj
(θ, θ′)) for 1 ≤ j ≤ C

⇒ P(B1 = · · · = BC = 0) = αFMH(θ, θ′), so can use this procedure to
perform the FMH accept/reject step

Intuition: sample a discrete Poisson point process on {1, . . . , n} with
intensity i 7→ λi (θ, θ

′) by thinning one with intensity i 7→ λi (θ, θ
′)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 10 / 24

Ingredient 2 - Fast Bernoulli simulation

How can we avoid simulating these n Bernoullis?

Assuming we have bounds

λi (θ, θ
′) ≥ − logαFMHi (θ, θ

′) =: λi (θ, θ
′)

we can use the following:

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′))

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
3 Bj ∼ Bernoulli(λXj

(θ, θ′)/λXj
(θ, θ′)) for 1 ≤ j ≤ C

⇒ P(B1 = · · · = BC = 0) = αFMH(θ, θ′), so can use this procedure to
perform the FMH accept/reject step

Intuition: sample a discrete Poisson point process on {1, . . . , n} with
intensity i 7→ λi (θ, θ

′) by thinning one with intensity i 7→ λi (θ, θ
′)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 10 / 24

Ingredient 2 - Fast Bernoulli simulation

How can we avoid simulating these n Bernoullis?

Assuming we have bounds

λi (θ, θ
′) ≥ − logαFMHi (θ, θ

′) =: λi (θ, θ
′)

we can use the following:

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′))

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
3 Bj ∼ Bernoulli(λXj

(θ, θ′)/λXj
(θ, θ′)) for 1 ≤ j ≤ C

⇒ P(B1 = · · · = BC = 0) = αFMH(θ, θ′), so can use this procedure to
perform the FMH accept/reject step

Intuition: sample a discrete Poisson point process on {1, . . . , n} with
intensity i 7→ λi (θ, θ

′) by thinning one with intensity i 7→ λi (θ, θ
′)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 10 / 24

Ingredient 2 - Fast Bernoulli simulation

How can we avoid simulating these n Bernoullis?

Assuming we have bounds

λi (θ, θ
′) ≥ − logαFMHi (θ, θ

′) =: λi (θ, θ
′)

we can use the following:

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′))

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
3 Bj ∼ Bernoulli(λXj

(θ, θ′)/λXj
(θ, θ′)) for 1 ≤ j ≤ C

⇒ P(B1 = · · · = BC = 0) = αFMH(θ, θ′), so can use this procedure to
perform the FMH accept/reject step

Intuition: sample a discrete Poisson point process on {1, . . . , n} with
intensity i 7→ λi (θ, θ

′) by thinning one with intensity i 7→ λi (θ, θ
′)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 10 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′))

⇒ O(1) (after precomputing
∑n

i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)

⇒ O(C)
(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C

⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′))

⇒ O(1) (after precomputing
∑n

i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)

⇒ O(C)
(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C

⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′))

⇒ O(1) (after precomputing
∑n

i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)

⇒ O(C)
(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C

⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi

and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)) ⇒ O(1) (after precomputing

∑n
i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)

⇒ O(C)
(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C

⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi

and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)) ⇒ O(1) (after precomputing

∑n
i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)

⇒ O(C)
(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C

⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)) ⇒ O(1) (after precomputing

∑n
i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
⇒ O(C)

(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C

⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)) ⇒ O(1) (after precomputing

∑n
i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
⇒ O(C)

(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C ⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)) ⇒ O(1) (after precomputing

∑n
i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
⇒ O(C)

(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C ⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Ingredient 2 - Fast Bernoulli simulation

Poisson subsampling

1 C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)) ⇒ O(1) (after precomputing

∑n
i=1 ψi)

2 X1, . . . ,XC
iid∼ Categorical

(
[λi (θ, θ

′)/
∑n

i=1 λi (θ, θ
′)]1≤i≤n

)
⇒ O(C)

(via Walker’s alias method [Walker, 1977], after Θ(n) setup cost)

3 Bj ∼ Bernoulli(λXj
(θ, θ′)/λXj

(θ, θ′)) for 1 ≤ j ≤ C ⇒ O(C)

⇒ Overall cost of O(C)

When is this efficient? Suppose our bounds have the form:

λi (θ, θ
′) = ϕ(θ, θ′)ψi ≥ − logαFMHi (θ, θ

′) = λi (θ, θ
′). (*)

Then:
n∑

i=1

λi (θ, θ
′) = ϕ(θ, θ′)

n∑
i=1

ψi and
λi (θ, θ

′)∑n
i=1 λi (θ, θ

′)
=

ψi∑n
i=1 ψi

.

(*) holds for instance if log πi is Lipschitz (but will see better case later).
Cornish et al. Scalable Metropolis–Hastings July 19, 2020 11 / 24

Potential problems

Two problems now to overcome:

1 Since C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)), potentially C > n

⇒ Must ensure C = o(n) if we are to achieve anything

2 Since each αFMHi (θ, θ
′) ≤ 1, can have αFMH(θ, θ′)→ 0 as n→∞

⇒ Must ensure αFMH(θ, θ′) is well behaved

These problems are are related since

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) and αFMH(θ, θ′) ≥ exp(−

n∑
i=1

λi (θ, θ
′)).

Key question is how to choose bounds for which
∑n

i=1 λi (θ, θ
′) is small.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 12 / 24

Potential problems

Two problems now to overcome:

1 Since C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)), potentially C > n

⇒ Must ensure C = o(n) if we are to achieve anything

2 Since each αFMHi (θ, θ
′) ≤ 1, can have αFMH(θ, θ′)→ 0 as n→∞

⇒ Must ensure αFMH(θ, θ′) is well behaved

These problems are are related since

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) and αFMH(θ, θ′) ≥ exp(−

n∑
i=1

λi (θ, θ
′)).

Key question is how to choose bounds for which
∑n

i=1 λi (θ, θ
′) is small.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 12 / 24

Potential problems

Two problems now to overcome:

1 Since C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)), potentially C > n

⇒ Must ensure C = o(n) if we are to achieve anything

2 Since each αFMHi (θ, θ
′) ≤ 1, can have αFMH(θ, θ′)→ 0 as n→∞

⇒ Must ensure αFMH(θ, θ′) is well behaved

These problems are are related since

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) and αFMH(θ, θ′) ≥ exp(−

n∑
i=1

λi (θ, θ
′)).

Key question is how to choose bounds for which
∑n

i=1 λi (θ, θ
′) is small.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 12 / 24

Potential problems

Two problems now to overcome:

1 Since C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)), potentially C > n

⇒ Must ensure C = o(n) if we are to achieve anything

2 Since each αFMHi (θ, θ
′) ≤ 1, can have αFMH(θ, θ′)→ 0 as n→∞

⇒ Must ensure αFMH(θ, θ′) is well behaved

These problems are are related since

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) and αFMH(θ, θ′) ≥ exp(−

n∑
i=1

λi (θ, θ
′)).

Key question is how to choose bounds for which
∑n

i=1 λi (θ, θ
′) is small.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 12 / 24

Potential problems

Two problems now to overcome:

1 Since C ∼ Poisson(
∑n

i=1 λi (θ, θ
′)), potentially C > n

⇒ Must ensure C = o(n) if we are to achieve anything

2 Since each αFMHi (θ, θ
′) ≤ 1, can have αFMH(θ, θ′)→ 0 as n→∞

⇒ Must ensure αFMH(θ, θ′) is well behaved

These problems are are related since

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) and αFMH(θ, θ′) ≥ exp(−

n∑
i=1

λi (θ, θ
′)).

Key question is how to choose bounds for which
∑n

i=1 λi (θ, θ
′) is small.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 12 / 24

Three key ingredients

1 A factorised MH acceptance probability

2 Procedures for fast simulation of Bernoulli random variables

3 Control performance using an approximate target (“control
variates”)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 13 / 24

Ingredient 3 - control variates

Write the target as

π(θ) =
n∏

i=1

πi (θ) =
n∏

i=1

exp(−Ui (θ))

for potentials Ui = − log πi (θ)

Approximate
Ûk,i (θ) ≈ Ui (θ)

where Ûk,i is a k-th order Taylor expansion of Ui around some fixed

θ̂ (not depending on i)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 14 / 24

Ingredient 3 - control variates

Write the target as

π(θ) =
n∏

i=1

πi (θ) =
n∏

i=1

exp(−Ui (θ))

for potentials Ui = − log πi (θ)

Approximate
Ûk,i (θ) ≈ Ui (θ)

where Ûk,i is a k-th order Taylor expansion of Ui around some fixed

θ̂ (not depending on i)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 14 / 24

Ingredient 3 - control variates

Also let

Ûk(θ) :=
n∑

i=1

Ûk,i (θ)

≈ U(θ) :=
n∑

i=1

Ui (θ) = − log π(θ)

which is itself a Taylor expansion of U(θ) around θ̂

Explicitly

Û1(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂)

Û2(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂) +
1

2
(θ − θ̂)>∇2U(θ̂)(θ − θ̂)

In particular, exp(−Û2(θ)) ≈ π(θ) is a Gaussian approximation to
the target at θ̂

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 15 / 24

Ingredient 3 - control variates

Also let

Ûk(θ) :=
n∑

i=1

Ûk,i (θ) ≈ U(θ) :=
n∑

i=1

Ui (θ) = − log π(θ)

which is itself a Taylor expansion of U(θ) around θ̂

Explicitly

Û1(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂)

Û2(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂) +
1

2
(θ − θ̂)>∇2U(θ̂)(θ − θ̂)

In particular, exp(−Û2(θ)) ≈ π(θ) is a Gaussian approximation to
the target at θ̂

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 15 / 24

Ingredient 3 - control variates

Also let

Ûk(θ) :=
n∑

i=1

Ûk,i (θ) ≈ U(θ) :=
n∑

i=1

Ui (θ) = − log π(θ)

which is itself a Taylor expansion of U(θ) around θ̂

Explicitly

Û1(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂)

Û2(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂) +
1

2
(θ − θ̂)>∇2U(θ̂)(θ − θ̂)

In particular, exp(−Û2(θ)) ≈ π(θ) is a Gaussian approximation to
the target at θ̂

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 15 / 24

Ingredient 3 - control variates

Also let

Ûk(θ) :=
n∑

i=1

Ûk,i (θ) ≈ U(θ) :=
n∑

i=1

Ui (θ) = − log π(θ)

which is itself a Taylor expansion of U(θ) around θ̂

Explicitly

Û1(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂)

Û2(θ) = U(θ̂) +∇U(θ̂)>(θ − θ̂) +
1

2
(θ − θ̂)>∇2U(θ̂)(θ − θ̂)

In particular, exp(−Û2(θ)) ≈ π(θ) is a Gaussian approximation to
the target at θ̂

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 15 / 24

Ingredient 3 - control variates

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

αSMH-k(θ, θ′) :=

(
1 ∧ exp(−Ûk(θ′))

exp(−Ûk(θ))

)
n∏

i=1

1 ∧
exp(Ûk,i (θ

′)− Ui (θ
′))

exp(Ûk,i (θ)− Ui (θ))
.

Corresponds to FMH using the factorisations

π = exp(−Ûk)︸ ︷︷ ︸
πn+1

n∏
i=1

exp(Ûk,i − Ui)︸ ︷︷ ︸
πi

First factor can be simulated directly in O(1) time

Remaining factors can be simulated with Poisson subsampling

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 16 / 24

Ingredient 3 - control variates

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

αSMH-k(θ, θ′) :=

(
1 ∧ exp(−Ûk(θ′))

exp(−Ûk(θ))

)
n∏

i=1

1 ∧
exp(Ûk,i (θ

′)− Ui (θ
′))

exp(Ûk,i (θ)− Ui (θ))
.

Corresponds to FMH using the factorisations

π = exp(−Ûk)︸ ︷︷ ︸
πn+1

n∏
i=1

exp(Ûk,i − Ui)︸ ︷︷ ︸
πi

First factor can be simulated directly in O(1) time

Remaining factors can be simulated with Poisson subsampling

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 16 / 24

Ingredient 3 - control variates

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

αSMH-k(θ, θ′) :=

(
1 ∧ exp(−Ûk(θ′))

exp(−Ûk(θ))

)
n∏

i=1

1 ∧
exp(Ûk,i (θ

′)− Ui (θ
′))

exp(Ûk,i (θ)− Ui (θ))
.

Corresponds to FMH using the factorisations

π = exp(−Ûk)︸ ︷︷ ︸
πn+1

n∏
i=1

exp(Ûk,i − Ui)︸ ︷︷ ︸
πi

First factor can be simulated directly in O(1) time

Remaining factors can be simulated with Poisson subsampling

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 16 / 24

Ingredient 3 - control variates

Define the Scalable Metropolis-Hastings (SMH) acceptance probability

αSMH-k(θ, θ′) :=

(
1 ∧ exp(−Ûk(θ′))

exp(−Ûk(θ))

)
n∏

i=1

1 ∧
exp(Ûk,i (θ

′)− Ui (θ
′))

exp(Ûk,i (θ)− Ui (θ))
.

Corresponds to FMH using the factorisations

π = exp(−Ûk)︸ ︷︷ ︸
πn+1

n∏
i=1

exp(Ûk,i − Ui)︸ ︷︷ ︸
πi

First factor can be simulated directly in O(1) time

Remaining factors can be simulated with Poisson subsampling

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 16 / 24

Ingredient 3 - control variates

Recall we need upper bounds

− logαFMHi (θ, θ
′) ≤ ϕ(θ, θ′)ψi =: λi (θ, θ

′)

Possible to show that, if we can find constants

Uk+1,i ≥ sup
θ∈Θ
|β|=k+1

|∂βUi (θ)| (*)

then we can use

λi (θ, θ
′) := (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

ϕ(θ,θ′)

Uk+1,i

(k + 1)!︸ ︷︷ ︸
ψi

(*) constitutes the only quantity that must be specified by hand to
use our method on a given model

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 17 / 24

Ingredient 3 - control variates

Recall we need upper bounds

− logαFMHi (θ, θ
′) ≤ ϕ(θ, θ′)ψi =: λi (θ, θ

′)

Possible to show that, if we can find constants

Uk+1,i ≥ sup
θ∈Θ
|β|=k+1

|∂βUi (θ)| (*)

then we can use

λi (θ, θ
′) := (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

ϕ(θ,θ′)

Uk+1,i

(k + 1)!︸ ︷︷ ︸
ψi

(*) constitutes the only quantity that must be specified by hand to
use our method on a given model

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 17 / 24

Ingredient 3 - control variates

Recall we need upper bounds

− logαFMHi (θ, θ
′) ≤ ϕ(θ, θ′)ψi =: λi (θ, θ

′)

Possible to show that, if we can find constants

Uk+1,i ≥ sup
θ∈Θ
|β|=k+1

|∂βUi (θ)| (*)

then we can use

λi (θ, θ
′) := (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

ϕ(θ,θ′)

Uk+1,i

(k + 1)!︸ ︷︷ ︸
ψi

(*) constitutes the only quantity that must be specified by hand to
use our method on a given model

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 17 / 24

Ingredient 3 - control variates

Heuristically, suppose

θ ∼ π (chain is at stationarity)

‖θ − θMAP‖ = O(1/
√
n) (1/

√
n concentration - key assumption)

‖θ′ − θ‖ = O(1/
√
n) (proposal is scaled like 1/

√
n)

‖θ̂ − θMAP‖ = O(1/
√
n) (θ̂ is not too far from mode)

then by the triangle inequality

n∑
i=1

λi (θ, θ
′) = (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

O(n−(k+1)/2)

n∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
O(n)

= O(n(1−k)/2)

In particular,
∑n

i=1 λi (θ, θ
′) is O(1) if k = 1 and O(1/

√
n) if k = 2

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 18 / 24

Ingredient 3 - control variates

Heuristically, suppose

θ ∼ π (chain is at stationarity)

‖θ − θMAP‖ = O(1/
√
n) (1/

√
n concentration - key assumption)

‖θ′ − θ‖ = O(1/
√
n) (proposal is scaled like 1/

√
n)

‖θ̂ − θMAP‖ = O(1/
√
n) (θ̂ is not too far from mode)

then by the triangle inequality

n∑
i=1

λi (θ, θ
′) = (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

O(n−(k+1)/2)

n∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
O(n)

= O(n(1−k)/2)

In particular,
∑n

i=1 λi (θ, θ
′) is O(1) if k = 1 and O(1/

√
n) if k = 2

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 18 / 24

Ingredient 3 - control variates

Heuristically, suppose

θ ∼ π (chain is at stationarity)

‖θ − θMAP‖ = O(1/
√
n) (1/

√
n concentration - key assumption)

‖θ′ − θ‖ = O(1/
√
n) (proposal is scaled like 1/

√
n)

‖θ̂ − θMAP‖ = O(1/
√
n) (θ̂ is not too far from mode)

then by the triangle inequality

n∑
i=1

λi (θ, θ
′) = (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

O(n−(k+1)/2)

n∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
O(n)

= O(n(1−k)/2)

In particular,
∑n

i=1 λi (θ, θ
′) is O(1) if k = 1 and O(1/

√
n) if k = 2

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 18 / 24

Ingredient 3 - control variates

Heuristically, suppose

θ ∼ π (chain is at stationarity)

‖θ − θMAP‖ = O(1/
√
n) (1/

√
n concentration - key assumption)

‖θ′ − θ‖ = O(1/
√
n) (proposal is scaled like 1/

√
n)

‖θ̂ − θMAP‖ = O(1/
√
n) (θ̂ is not too far from mode)

then by the triangle inequality

n∑
i=1

λi (θ, θ
′) = (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

O(n−(k+1)/2)

n∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
O(n)

= O(n(1−k)/2)

In particular,
∑n

i=1 λi (θ, θ
′) is O(1) if k = 1 and O(1/

√
n) if k = 2

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 18 / 24

Ingredient 3 - control variates

Heuristically, suppose

θ ∼ π (chain is at stationarity)

‖θ − θMAP‖ = O(1/
√
n) (1/

√
n concentration - key assumption)

‖θ′ − θ‖ = O(1/
√
n) (proposal is scaled like 1/

√
n)

‖θ̂ − θMAP‖ = O(1/
√
n) (θ̂ is not too far from mode)

then by the triangle inequality

n∑
i=1

λi (θ, θ
′) = (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

O(n−(k+1)/2)

n∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
O(n)

= O(n(1−k)/2)

In particular,
∑n

i=1 λi (θ, θ
′) is O(1) if k = 1 and O(1/

√
n) if k = 2

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 18 / 24

Ingredient 3 - control variates

Heuristically, suppose

θ ∼ π (chain is at stationarity)

‖θ − θMAP‖ = O(1/
√
n) (1/

√
n concentration - key assumption)

‖θ′ − θ‖ = O(1/
√
n) (proposal is scaled like 1/

√
n)

‖θ̂ − θMAP‖ = O(1/
√
n) (θ̂ is not too far from mode)

then by the triangle inequality

n∑
i=1

λi (θ, θ
′) = (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

O(n−(k+1)/2)

n∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
O(n)

= O(n(1−k)/2)

In particular,
∑n

i=1 λi (θ, θ
′) is O(1) if k = 1 and O(1/

√
n) if k = 2

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 18 / 24

Ingredient 3 - control variates

Heuristically, suppose

θ ∼ π (chain is at stationarity)

‖θ − θMAP‖ = O(1/
√
n) (1/

√
n concentration - key assumption)

‖θ′ − θ‖ = O(1/
√
n) (proposal is scaled like 1/

√
n)

‖θ̂ − θMAP‖ = O(1/
√
n) (θ̂ is not too far from mode)

then by the triangle inequality

n∑
i=1

λi (θ, θ
′) = (‖θ − θ̂‖k+1

1 + ‖θ′ − θ̂‖k+1
1)︸ ︷︷ ︸

O(n−(k+1)/2)

n∑
i=1

Uk+1,i

(k + 1)!︸ ︷︷ ︸
O(n)

= O(n(1−k)/2)

In particular,
∑n

i=1 λi (θ, θ
′) is O(1) if k = 1 and O(1/

√
n) if k = 2

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 18 / 24

Summary

This directly yields an average cost per step

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) =

{
O(1), k = 1

O(1/
√
n) k = 2.

Likewise, acceptance probability is stable since

αSMH-k(θ, θ′) :=

(
1 ∧ exp(−Ûk(θ′))

exp(−Ûk(θ))

)
︸ ︷︷ ︸

≥exp(−O(1))
(can show)

n∏
i=1

1 ∧
exp(Ûk,i (θ

′)− Ui (θ
′))

exp(Ûk,i (θ)− Ui (θ))︸ ︷︷ ︸
≥exp(−

∑n
i=1 λi (θ,θ

′))

.

Can do even better with a exp(−Ûk)-reversible proposal (first term
vanishes).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 19 / 24

Summary

This directly yields an average cost per step

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) =

{
O(1), k = 1

O(1/
√
n) k = 2.

Likewise, acceptance probability is stable since

αSMH-k(θ, θ′) :=

(
1 ∧ exp(−Ûk(θ′))

exp(−Ûk(θ))

)
︸ ︷︷ ︸

≥exp(−O(1))
(can show)

n∏
i=1

1 ∧
exp(Ûk,i (θ

′)− Ui (θ
′))

exp(Ûk,i (θ)− Ui (θ))︸ ︷︷ ︸
≥exp(−

∑n
i=1 λi (θ,θ

′))

.

Can do even better with a exp(−Ûk)-reversible proposal (first term
vanishes).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 19 / 24

Summary

This directly yields an average cost per step

E[C |θ, θ′] =
n∑

i=1

λi (θ, θ
′) =

{
O(1), k = 1

O(1/
√
n) k = 2.

Likewise, acceptance probability is stable since

αSMH-k(θ, θ′) :=

(
1 ∧ exp(−Ûk(θ′))

exp(−Ûk(θ))

)
︸ ︷︷ ︸

≥exp(−O(1))
(can show)

n∏
i=1

1 ∧
exp(Ûk,i (θ

′)− Ui (θ
′))

exp(Ûk,i (θ)− Ui (θ))︸ ︷︷ ︸
≥exp(−

∑n
i=1 λi (θ,θ

′))

.

Can do even better with a exp(−Ûk)-reversible proposal (first term
vanishes).

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 19 / 24

Application - logistic regression

We consider logistic regression with covariates xi ∈ Rd and responses
yi ∈ {0, 1}

p(yi |θ, xi) = Bernoulli(yi |
1

1 + exp(−θ>xi)
)

⇒ Ui (θ) = − log p(yi |θ, xi) = log(1 + exp(θT xi))− yiθ
>xi

Admits upper bounds

U2,i =
1

4
max

1≤j≤d
|xij |2 U3,i =

1

6
√

3
max

1≤j≤d
|xij |3

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 20 / 24

Application - logistic regression

We consider logistic regression with covariates xi ∈ Rd and responses
yi ∈ {0, 1}

p(yi |θ, xi) = Bernoulli(yi |
1

1 + exp(−θ>xi)
)

⇒ Ui (θ) = − log p(yi |θ, xi) = log(1 + exp(θT xi))− yiθ
>xi

Admits upper bounds

U2,i =
1

4
max

1≤j≤d
|xij |2 U3,i =

1

6
√

3
max

1≤j≤d
|xij |3

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 20 / 24

Application - logistic regression

Empirical result for d = 10

64 128 256 512 1024 2048 4096 8192 32768 131072
n

101

102

103

104

105
Lik

el
ih

oo
ds

 p
er

 it
er

at
io

n
MH
SMH-1
SMH-2

Figure 2: Average number of likelihood evaluations per iteration required by SMH
for a 10-dimensional logistic regression posterior as the number of data points n
increases.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 21 / 24

Application - logistic regression

Empirical result for d = 10

64 128 256 512 1024 2048 4096 8192 32768 131072
n

101

102

103

104
Ef

fe
ct

iv
e

sa
m

pl
e

siz
e

pe
r s

ec
on

d

MH
SMH-1
SMH-2
FlyMC
Zig-Zag

Figure 3: Effective sample size per second of computation for posterior mean of
first regression coefficient (higher is better)

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 22 / 24

Thanks for listening

Find us later at poster #202.

Cornish et al. Scalable Metropolis–Hastings July 19, 2020 23 / 24

