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Formulation

A neural network f : X → Y is equivariant with respect to the actions of a
group G if

f (g · x) = g · f (x)

for all x ∈ X and g ∈ G

In this example:

X is set of images

Y is set of binarisations

G is the group of translations
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Many other examples



Key question

How can we parameterise an equivariant neural network?

Two key approaches: intrinsic equivariance and symmetrisation
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Intrinsic equivariance

Overall model f : X → Y has form

· · ·X YEquivariant
linear

Equivariant
nonlinear

Equivariant
linear

where the individual layers are all equivariant via e.g. weight tying

A natural idea, but:

Requires hand engineering for each case

Nonlinear layers are often ad hoc

Can be brittle at scale (e.g. AlphaFold 2 vs. 3)
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symUnconstrained Equivariant

f : X → Y sym(f ) : X → Y

Here f is completely general and opaque
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Symmetrisation: example

Early example is Janossy pooling [Murphy et al., 2019]: given

f : X n → Rd ,

the following function X n → Rn is always permutation invariant:

1

n!

∑
σ∈Sn

f (xσ(1), . . . , xσ(n))



Symmetrisation: other examples

Other recent examples, given f : X → Rd and a group G

1
|F(x)|

∑
g∈F(x) g · f (g−1 · x) [Puny et al., 2022]

h(x) · f (h(x)−1 · x) [Kaba et al., 2023]

EG∼p(g |x)[G · f (G−1 · x)] [Kim et al., 2023]

Under some conditions, each is equivariant in x ∈ X , even if f is arbitrarily
complex
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Some research questions

Where do these methods “come from”? Are they the only possibilities?

What about stochastic models?
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Stochastic equivariance: illustration



Contribution



Methodological contribution

Contribution

A general theory of symmetrisation procedures that extends to stochastic
models (plus various other methodological extensions)



Theoretical contribution

Underlying theory of [Cornish, 2024] is developed in terms of Markov
categories

Implication

Markov categories can produce novel methodology for AI (not just
retrospective simplifications)

But why care in the first place?
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Digression: three models

Mental model

Mathematical model Computational model

̸= ̸=

̸=



Probabilistic reasoning

For probabilistic settings, a major reason for this is measure theory

In practice, we often prefer semi-formal “density” notation, e.g.

p(x , y) = p(x) p(y |x)

Works well in many cases, but have to write things like

x ∼ pθ(x |z ∼ qϕ(z |x , y), y)

which can make things actually more complex
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Example: stochastic equivariance in densities

A density p(y |x) is equivariant if (provided g · has unit Jacobian)

p(y |x) = p(g · y |g · x)

Hard to see the input/output interpretation of equivariance here
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The Markov categorical approach

Markov categories abstract away painful technical details, but maintains
rigour

Theory becomes very conceptual and diagrammatic, and closer to mental
and computational models (e.g. DisCoPy)

Empirically, this was actually how this work came about!
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Symmetrisation procedures in Markov categories



Markov kernels

The key example of a Markov category is Stoch:

Objects X and Y are measurable spaces

Morphisms k : X → Y are Markov kernels k(dy |x)

Think of kernels as conditional distributions or stochastic maps

k

Y

X

Can formalise as functions k : ΣY × X → [0, 1] satisfying some conditions



Markov kernels

The key example of a Markov category is Stoch:

Objects X and Y are measurable spaces

Morphisms k : X → Y are Markov kernels k(dy |x)

Think of kernels as conditional distributions or stochastic maps

k

Y

X

Can formalise as functions k : ΣY × X → [0, 1] satisfying some conditions



Markov kernels

The key example of a Markov category is Stoch:

Objects X and Y are measurable spaces

Morphisms k : X → Y are Markov kernels k(dy |x)

Think of kernels as conditional distributions or stochastic maps

k

Y

X

Can formalise as functions k : ΣY × X → [0, 1] satisfying some conditions



Markov categories

Definition ([Fritz, 2020], [Cho and Jacobs, 2019])

A Markov category is a semicartesian symmetric monoidal category
(C,⊗, I ) in which every object X is equipped with a commutative
comonoid structure (copyX ,delX ) that is suitably compatible with ⊗.

Essentially, we can compose sequentially and in parallel, and can swap,
copy, and discard information:

X X

X X

Y X

X Y
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Examples of Markov categories

Many examples of Markov categories including:

Category Objects Morphisms

Stoch Measurable spaces Markov kernels
BorelStoch Standard Borel spaces Markov kernels
TopStoch Topological spaces Continuous Markov kernels

...

Theory is now “write once, run anywhere”



Examples of Markov categories

Many examples of Markov categories including:

Category Objects Morphisms

Stoch Measurable spaces Markov kernels
BorelStoch Standard Borel spaces Markov kernels
TopStoch Topological spaces Continuous Markov kernels

...
Set Sets Functions

Meas Measurable spaces Measurable functions
Top Topological spaces Continuous functions

Theory is now “write once, run anywhere”



Groups and actions

A group in a Markov category C is an object G equipped with

∗ e (−)−1

G G

G G G

G

An action of a group G is a morphism

αX

X

X

G

Both satisfy the usual axioms (expressed in diagrams)
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Example: associativity

Multiplication must satisfy:

∗

∗
=

∗

∗

G G G G G G

GG

In Set, this just recovers associativity: for all g , g ′, g ′′ ∈ G we have

g(g ′g ′′) = (gg ′)g ′′
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Equivariance

A morphism k : X → Y is equivariant with respect to αX and αY if

=
k

αX

Y

G X

k

αY

Y

G X

When the morphisms of C are functions, this gives the usual

k(g · x) = g · k(x)

For Markov kernels, this gives stochastic equivariance:

k(dy |g · x) = g · k(dy |x)
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Markov category of equivariant maps

Theorem

Given a group G in a Markov category C, always obtain a Markov category
CG where:

Objects are pairs (X , αX ), where αX is an action of G on X

Morphisms (X , αX ) → (Y , αY ) are equivariant w.r.t. αX and αY

Other components (⊗, copy maps, etc.) are inherited from C
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Symmetrisation procedures

Definition (for today)

A symmetrisation procedure is a function sym of the following form

C(X ,Y )︸ ︷︷ ︸
Morphisms X → Y in C

CG ((X , αX ), (Y , αY ))
sym

Despite generality, can characterise all such functions of this form
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Key result

Theorem

There is always a bijection

C(X ,Y ) CG ((G , ∗)⊗ (X , αX ), (Y , αY ))
∼=

defined as follows:

k

Y

X

αX

(−)−1

Y

k

αY

G X

∼=



Categorical explanation

Arises from an adjunction of the form

C ⊥ CG
F

U

where U(X , αX ) := X , which gives

C(X ,Y ) = C(U(X , αX ),U(Y , αY ))

∼= CG (FU(X , αX ), (Y , αY ))

∼= CG ((G , ∗)⊗ (X , αX ), (Y , αY ))



A general strategy for symmetrisation

Corollary

Every symmetrisation procedure C(X ,Y )
sym−→ CG ((X , αX ), (Y , αY )) can

be expressed as a composition

C(X ,Y )
∼=−→ CG ((G , ∗)⊗ (X , αX ), (Y , αY )) −→ CG ((X , αX ), (Y , αY )),

and vice versa, for some choice of function in the second step.

Only (natural) choice for second step is precomposition:

(X , αX )
Γ−→

(G , ∗)⊗ (X , αX )
k−→ (Y , αY )

i.e. k 7→ k ◦ Γ



A general strategy for symmetrisation

Corollary

Every symmetrisation procedure C(X ,Y )
sym−→ CG ((X , αX ), (Y , αY )) can

be expressed as a composition

C(X ,Y )
∼=−→ CG ((G , ∗)⊗ (X , αX ), (Y , αY )) −→ CG ((X , αX ), (Y , αY )),

and vice versa, for some choice of function in the second step.

Only (natural) choice for second step is precomposition:

(X , αX )
Γ−→

(G , ∗)⊗ (X , αX )
k−→ (Y , αY )

i.e. k 7→ k ◦ Γ



A general strategy for symmetrisation

Corollary

Every symmetrisation procedure C(X ,Y )
sym−→ CG ((X , αX ), (Y , αY )) can

be expressed as a composition

C(X ,Y )
∼=−→ CG ((G , ∗)⊗ (X , αX ), (Y , αY )) −→ CG ((X , αX ), (Y , αY )),

and vice versa, for some choice of function in the second step.

Only (natural) choice for second step is precomposition:

(X , αX )
Γ−→ (G , ∗)⊗ (X , αX )

k−→ (Y , αY )

i.e. k 7→ k ◦ Γ



Precomposition morphism

Natural to require that if k is already G -equivariant, then

sym(k) = k

i.e. procedure is stable on equivariant inputs

Can show: holds iff precomposition morphism has the form

X

γ

G X

=Γ

G X

X

where γ : (X , αX ) → (G , ∗) in CG
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End-to-end procedure

Algorithm

Given a suitable γ, overall procedure now has form

C(X ,Y )
∼=−→ CG ((G , ∗)⊗ (X , αX ), (Y , αY )) −→ CG ((X , αX ), (Y , αY ))

where these steps are computed as follows:

k

Y

X

αX

(−)−1

Y

k

αY

G X

αX

(−)−1

Y

k

αY

X

γ

∼= Precompose



Instantiation in Set

Corollary

Suppose G is a group acting on X and Y . If k : X → Y is any function,
and γ : X → G is equivariant (where G acts on itself by left
multiplication), then the following defines an equivariant function X → Y
given x ∈ X:

γ(x) · k(γ(x)−1 · x)

Exactly recovers canonicalisation [Kaba et al., 2023]
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Instantiation in Stoch

Also obtain a novel procedure for stochastic symmetrisation

Corollary

Suppose G is a measurable group acting measurably on X and Y . If
k : X → Y is any Markov kernel, and γ : X → G is stochastically
equivariant (where G acts on itself by left multiplication), then the
following sampling process given x ∈ X defines a stochastically equivariant
Markov kernel X → Y :

G ∼ γ(dg |x) Y ∼ k(dy |G−1 · x) return G · Y

Note: technically should define this kernel as a function ΣY × X → [0, 1]

satisfying a measurability condition...
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Extensions

The paper contains various extensions:

Deterministic symmetrisation via averaging

Symmetrisation along a homomorphism φ : H → G

Compositional usage

Recursive usage to obtain γ

Also many examples:

Compact groups

Translation groups

Direct and semidirect products

Even GL(d ,R)

Markov categories allow describing all this in a uniform and coherent way
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Numerical results



Follow-up work



Overview

Recall that denoising diffusion models consist of forward and backwards
processes defined as

q(z0:T ) = q(z0)
T∏
t=1

q(zt |zt−1) pθ(z0:T ) = p(zT )
T∏
t=1

pθ(zt−1|zt)

The idea is:

q(z0) is the data distribution

q(zT ) ≈ p(zT ) is Gaussian

Try to learn pθ(z0) ≈ q(z0)

Often want pθ(zt−1|zt) to be equivariant (e.g. molecular data)
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Strategy for equivariant diffusion

Previous work has enforced stochastic equivariance by setting

pθ(zt−1|zt) := N (zt−1;µθ(zt), σ
2
t I )

where µθ is intrinsically equivariant (e.g. a graph neural network)

We instead take

pθ(zt−1|zt) := symγθ
(kθ)(zt−1|zt)

where kθ and γθ may leverage arbitrary neural networks
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SymDiff training for E (3)-equivariance

Resembles a learned data augmentation that is deployed at sampling time
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Results

We obtained better performance compared with an intrinsic baseline
(EDM [Hoogeboom et al., 2022]), and on par or better results compared
with more sophisticated molecular models



Results

We obtained better performance compared with an intrinsic baseline
(EDM [Hoogeboom et al., 2022]), and on par or better results compared
with more sophisticated molecular models



Thank you!



References I

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro.
Janossy pooling: Learning deep permutation-invariant functions for
variable-size inputs. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=BJluy2RcFm.

Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli
Ben-Hamu, and Yaron Lipman. Frame averaging for invariant and equivariant
network design. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=zIUyj55nXR.
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Appendix



Example γ

When G is compact, can choose γ : (X , αX ) → (G , ∗) as

γ

(G , ∗)

(X , αX )

:=
λ

(G , ∗)

(X , αX )

where here λ : (I , ϵ) → (G , ∗) satisfies

=
λ

∗

G

G

∗

G

G



Determinism via averaging

Proposition

Suppose Y = Rd , and denote

ave(k)(x) :=

∫
y k(dy |x)

If G acts linearly on Y , then this corresponds to a function

StochG ((X , αX ), (Y , αY )) StochGdet((X , αX ), (Y , αY )).
ave



Deterministic symmetrisation via averaging

Can combine averaging with stochastic symmetrisation:

Stoch(X ,Y )
symγ−→ StochG ((X , αX ), (Y , αY ))

ave−→ StochGdet((X , αX ), (Y , αY ))

When applied to a deterministic function f , the result is

EG∼γ(dg |x)[G · f (G−1 · x)]

which recovers the methods of Kim et al. [2023] and Puny et al. [2022]

Note however that averaging is expensive, approximate, and requires
convexity of Y
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